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Abstract —  Some IT systems, including banking systems, 

perform workload cycles on a daily basis. These workloads are 

composite workloads of online and batch processing. To separate 

the impact of these two workloads, typical banking systems 

employ individual computers dedicated to each type of workload. 

Since each dedicated system is designed to fit the peak times of 

their respective tasks, it is difficult to optimize the scale of the 

system as a whole. In this paper, we propose an effective method 

for maximizing disk I/O performance under composite workloads. 

Our basic idea depends on the fact that online workloads and 

batch workloads (1) have different peak times in a day, and (2) 

have different I/O patterns and lengths of disk access. 

Keywords — disk I/O control, I/O scheduling, online processing, 

batch processing 

I. INTRODUCTION 

IT systems, like those used in banking systems, have two 
types of workloads: online processing workloads and batch 
processing workloads. Online processing workloads are short-
time processing tasks that should be executed quickly by 
answering user’s request. It is difficult to predict the number of 
online processing workloads. On the other hand, batch 
processing workloads are executed preemptively. Therefore, 
online processing workloads require elastic resource allocation 
while batch processing workloads require statically optimal 
resource allocation. 

To handle these composite workloads, typical banking 
systems employ individual computers dedicated to each type of 
workload. Since each dedicated system is designed to fit the 
peak times of their respective tasks, it is difficult to optimize 
the scale of the system as a whole. However, we believe that 
executing online processing workloads and batch processing 
workloads on a single computer is possible if we schedule the 
workloads carefully. Basically, the two workloads have 
different peak times in a day (shown in Figure 1); if not, it is 

crucial to reduce the impact of batch processing workloads on 
the response time of online processing workloads. Therefore, it 
is important to prioritize the scheduling of online processing 
workloads over batch processing workloads. The scheduling of 
composite workloads using conventional priority control on a 
CPU will not work well because resource conflicts stem not 
from the CPU but from disk I/O requests. When the I/O request 
of batch processing workload is invoked before online 
processing, the online processing workload will be suspended 
for long time. 

In this paper, we present how the disk I/O requests of batch 
processing workloads influence online processing workloads 
within composite workloads. We also propose a new disk I/O 
control mechanism that gives high-priority to I/O requests of 
online processing workloads. This mechanism reduces the 
waiting time of I/O requests of online processing workloads. 

II. A SYSTEM ENVIRONMENT TO EXECUTE ONLINE PROCESSING 

WORKLOADS AND BATCH PROCESSING WORKLOADS 

A. Delay of an I/O request to a disk 

The execution time of online processing workloads should 
be short because the response time directly impacts the quality 

Fig1. The utilization of the computer resources in a day. 
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of the user experience. Therefore, online processing workloads 
often use CPUs for a short time and emit smaller disk I/O 
requests. On the other hand, the I/O requests and CPU usage of 
batch processing workloads are larger than that of online 
processing workloads. Therefore, not only priority control of the 
CPU but also priority control of I/O requests are necessary to 
guarantee the response time of online processing workloads. For 
example, when a batch processing workload requests a disk I/O 
that has a long execution time, the online processing workload 
will have to wait for this to be finished because the disk driver 
cannot handle I/O requests in parallel. Figure 2 shows this 
situation. In the figure, the online processing (CPU) workload 
and batch processing (CPU) workload execute their tasks by 
sharing the single CPU resource. The batch processing (CPU) 
workload calls the disk driver to execute an I/O request, and the 
disk driver handles the I/O request. Right after this I/O request, 
the online processing (CPU) workload also calls the disk driver. 
However, the I/O request of the online processing (CPU) 
workload is blocked until disk I/O of the batch processing 
workload is finished. To remedy this situation, we can assign the 
online workload a high CPU priority, which gives it a chance to 
call the disk driver prior to other batch I/O requests. However, 
when the disk I/O is emitted by the batch workload by chance, 
then the CPU priority will not work because the disk I/O is 
completely serialized on a first-come, first-served basis. 
Therefore, it is required to establish a disk I/O control 
mechanism to prioritize particular I/O requests. 

III. EXECUTION TIME OF THE I/O REQUESTS WITH DIFFERENT 

LENGTH OF DATA 

A. Comparison of the I/O requests 

The typical flow of one transaction in an online processing 
proceeds as follows: (1) the contents of the user's request are 
written on a disk; (2) the process is executed; (3) the results are 
written on a disk; and (4) the results are returned to the user. 
For the batch processing, (1) the process is executed, and (2) 
 

TABLE I. SPECIFICATIONS OF THE COMPUTER. 

CPU Intel i5 3.2GHz 4 cores 

No hyper-threading 

Disk for 

data 

I/O path SATA3.0 

DISK 
7,400 RPM 

32MB cache 

File system UFS 

Cache of file 

system 
Not use 

OS FreeBSD 11.0-RELEASE-p1 

and the results are written on a disk repeatedly. 

The length of data that batch processing workloads write on 
a disk is different from that of online processing workloads. As 
shown in Figure 3(A), the lengths of most data written by online 
processing workloads are less than 1,000 bytes. In contrast, 
Figure 3(B) shows that the length of data written by batch 
processing workloads range from over one million to several 
hundred million bytes. 

B. Analyzing relation between size of data and processing 

time of I/O request Units 

 Table I shows the specifications of the computer we used to 
measure the relation between the length of the data and 
processing time.  

C. Evaluation programs 

We prepared two evaluation programs based on the 
characteristics of online processing workloads and batch 
processing workloads described in Section III(A). Figure 4(A) 
shows the flow of the pseudo online transaction program of the 
online processing workload. It consists of writing the contents 
of a request on a disk, executing a process for the request, 
writing data of the results on a disk, and finally returning the 
results to the user. This pseudo online transaction program is 
executed repeatedly. Figure 4(B) shows the flow of the pseudo 
batch processing program. It repeats the execution of a process 
and writes data (twice) on a disk. When the pseudo batch 
processing program writes data on the disk, it writes large data 
on the disk twice.  

The pseudo online transaction program writes 1,000 bytes 
for each I/O request. The batch transaction program writes one 
million bytes each. 

We determine the number of transactions of the pseudo 
online transaction program and the number of times the pseudo 

Online processing 

(CPU) workload 

Bach processing 

(CPU) workload 

Disk driver 

Fig. 2. I/O requests and delay of processing. 
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Fig. 3. Distribution of length of data. 
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batch processing program is repeated based on the following 
assumptions: (1) CPU time of the pseudo online transaction 
program and pseudo batch processing program is equal to the 
time to write all of the data; and (2) the pseudo online transaction 
program and pseudo batch processing program are executed at 
the same time slot. Specifically, we determine that the number 
of transactions of the pseudo online transaction program is 50, 
and the number of repetition times of the pseudo batch 
processing program is five. In the case of the pseudo online 
transaction program, if the CPU time is 0 s, then the execution 
time to write all the data is 92.63 ms when the pseudo online 
transaction program executes the transactions 50 times. In other 
words, the time to write data on the disk for one transaction is 
1.85 ms. In the pseudo batch processing program, if the CPU 
processing time is 0 s, then the execution time to write data on 
the disk five times is 297.05 ms. In other words, the execution 
time to write data on the disk (twice) is 59.41 ms. We determine 
that the execution time (CPU) of the pseudo online transaction 
program (one transaction) is 2 ms while that of the pseudo batch 
processing program is 60 ms because we assume that the time to 
execute both pseudo programs are almost equal to the time for 
both pseudo programs to write data. In addition, we determine 
that the execution time to return a result is 0 ms because it is 
simpler than others. The execution time of the pseudo online 
transaction program with 50 transactions is 192.5 ms. The 
execution time of the pseudo batch processing program with five 
repetitions is 597.05 ms. 

D. Results of the execution 

Figure 5 shows the results of the evaluation, i.e., the time 
elapsed to write 1,000 bytes of data. We also performed the same 
evaluation by changing the parallelism of the transactions (1, 2, 
5, and 10). 

As the number of concurrencies of pseudo online transaction 
programs increase, the performance to write data decreases. On 
the other hand, pseudo batch processing programs are not 
affected by the concurrency. With the increase in the number of 

pseudo batch processing programs, the number of write() system 
calls with long execution time increase. Consequently, the disk 
driver is occupied with the workloads of batch processing 
programs. In other words, the possibility of the workloads of 
pseudo online transaction programs getting stuck is increased. 

In the case of the 1,000-bytes transaction with the single 
concurrency program, the execution time is 1.23 ms in Figure 5. 
In the case of one million bytes of data, it becomes 0.032 ms per 
1,000 bytes. For simple calculations, these two should be same. 
However, this depends on the length of whole data. Therefore, 
the I/O throughput will be good when the length of data to write 
at once is long. 

When batch processing workloads to write long-length data 
at once and online processing workloads to write short-length 
data are executed on the same computer, the execution time of 
the I/O request of online processing workloads becomes longer 
as the number of requests increase, and the response time 
becomes worse. 

IV. THE DISK I/O CONTROL MECHANISM 

A. Execution Control of I/O requests 

When online processing workloads and batch processing 
workloads are executed on the same computer, the online 
processing workload, which has I/O requests with short-length 
data, is often encumbered by the batch processing workload. 
Thus, we focus on the fact that the length of data of the online 
processing workloads is short. We propose an execution control 
mechanism for I/O requests, which executes I/O requests with 
short-length data with high priority. That is: 

1. If the data length is short, it should have high priority (= I/O 
requests of online processing).  

2. If the data length is long, it should have low priority (= I/O 
request of batch processing) 

Figure 6 shows the structure of the execution control 
mechanism of the I/O requests. 

1) I/O queues for I/O requests 
We have two types of queues classified according to I/O 

length. The I/O request is inserted into the queue which 
corresponds to the data length. To classify each request, the 
argument of the write() system call will be captured. 

Fig. 4. Flow of evaluation programs. 
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2) Divide I/O requests into pieces of short-length data 
By dividing the data, we can shorten the execution time of 

each I/O request. As a result, this mechanism can reduce cases 
where the long-data disk I/O blocks other I/O requests. In other 
words, we can shorten the waiting time of the I/O requests of 
online workloads. 

3) Priority control of I/O requests 
The priority control takes an I/O request out of a queue and 

sends it to a disk driver. If there are I/O requests in the queue 
for short-length data, the priority control takes the I/O request 
out of the queue for short-length data. If there is no I/O request 
in the queue for short-length data, then the priority control takes 
the I/O request out of the queue for long-length data. 

V. EVALUATION USING A SIMULATION MODEL 

A. Evaluation points 

Under the situation in which a lot of I/O requests occur, the 
waiting time for executing the I/O request and disk busy rate 
increase. Therefore, we evaluate following: 
1. Disk busy rate and elapsed time to execute I/O requests. 
2. Disk busy rate and elapsed time to wait for starting execution 

of I/O requests. 

We consider three cases of disk busy rate: high rate, low rate, 
and middle rate. We define the disk busy rate as the ratio of the 
amount of time assigned to drive the I/O bus out of the whole 
execution time. 

We evaluate following three types of controls for above-
mentioned 1 and 2 in our simulation model. 

1.  No priority control 
2. Priority control of the CPU (online workload has high 

priority) 
3. Priority control of both CPU and I/O requests (online 

workload has high priority). 

B. Assigned computer resouce 

We determine the maximum dividing length of I/O request, 
where the elapsed time to write data is nearly equal to the time 
to execute the I/O request of 1,000 bytes. Specifically, in our 
measurement environment, the time to write 1,000 bytes of data 
is 0.926 ms and the time to write 10,000 bytes of data is 1.26 

ms. Thus, we determine that the length of data into which an 
I/O request is divided is 10,000 bytes of data. The computer 
using in our simulation model has four CPUs and a single I/O 
path. We set the time to write 1,000 bytes and 10,000 bytes of 
data as 1 ms. 

We describe below the rules of the CPU and I/O path 
allocation in our simulation model. 

1) Rules of CPU allotment 
(A) When multiple tasks are awaiting CPU allotment, the tasks 

are assigned to the CPU in a first in, first out (FIFO) manner. 
(B) The CPU time slice is 10 ms. The next awaiting task is 

assigned to the CPU in a unit of 10 ms. 
(C) Tasks have CPU affinity; thus, when a task is scheduled for 

the first time, it can be freely assigned to any vacant CPU. 
But once it is bound to a specific CPU, it should be fixed to 
that same CPU. 

2) Rules of I/O path allotment 
(A) If execution of the I/O requests are required from multiple 

tasks simultaneously, these are handled in the order of FIFO. 
(B) The time slice of an I/O path is 1 ms. An I/O request is 

assigned to the I/O path in a unit of 1 ms if there are other 
pending I/O requests. 

C. CPUs and I/O path Allotment using the priority control 

We apply the priority control of CPUs and I/O path 
allotment. We describe the rules of priority control below. 

1) Rules for priority control of CPU allotment 
(A) When multiple tasks are awaiting CPU allotment 

simultaneously, the tasks with high CPU priority are 
assigned. If there are multiple tasks with the same priority, 
then these are handled in FIFO order. 

2) Rules for priority control of I/O path allotment 
(A) If execution of the I/O requests are required from multiple 

tasks awaiting I/O path allotment simultaneously, then the 
I/O request of the task with high priority is assigned to the 
I/O path. 

(B) The priority of I/O requests is compared. If the priority of 
I/O requests is same, these are handled in FIFO order. If the 
I/O request has a high priority, it is assigned to the I/O path.  

D. Simulation model 

Table II shows our model of online processing workloads. 
The online processing workloads use the same simulation 
model with the three cases of disk busy rate. Banking IT 
systems are usually designed to have a margin of CPU 
utilization because online processing workloads are executed 
based on the demands of many users, and the workloads for 
computer resources cannot be assigned preemptively. 
Therefore, we determine the start timing of the online 
processing workloads so that CPU utilization of online 
processing workloads is approximately 50% for the cases of our 
simulation model. We show models of the batch processing 
workloads of case 1 (low disk busy rate), case 2 (middle disk 
busy rate), and case 3 (high disk busy rate) in Table III. We 
realize that the increase or decrease of the disk busy rate 
changes the total length of data, which is the I/O request of 
batch processing workload. The length of data of the I/O 
request is divided into pieces of data which are assumed to be 
10,000 bytes. 

 Queue for short-length 

data 

Queue for long-length 

data 

Disk driver 

I/O queues to wait for 

executing I/O requests 

Priority Control for I/O requests 

Divide 

I/O requests 

into short-

length data 

Priority 

control of 

I/O requests 

Write() System call 

Fig.6. Disk I/O control mechanism for I/O requests to a disk. 
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E. Results 

Table IV shows the disk busy rate and total CPU utilization 
of each case. Table V shows the CPU utilization of the online 
processing workloads and batch processing workloads. 

1) Evaluation 1 (The average execution time) 
Figure 7 shows the average execution time of the online 

processing workloads and batch processing workloads of each 
case. We make the following observations from Figure 7. 

(A) The average execution time of online processing workloads 
improved for cases 1 to 3 using the priority control for I/O 
requests. In order of case 1, case 2 and case 3, the average 
execution time of online processing workloads in case 3 is the 
longest with the no priority and only CPU priority controls. In 
other words, this shows that the average execution time of 
online processing workloads tends to be longer as the disk busy 
rate rises in cases of the no priority and only CPU priority 
controls. This is because the execution time of the I/O requests 
of batch processing workloads increases and the number of 
online processing workloads that wait a long time for the 
execution of I/O requests increases. On the other hand, in the 
case of CPU+I/O priority control, there is a slight increase in 
the average execution time of online processing workloads in 
cases 1 to 3. 

(B) With regard to the batch workloads, the average execution 
time using only CPU priority control or CPU+I/O priority 
control is longer compared with the average execution time 
using no priority control for all three cases. In addition, the 
average execution time of the only CPU priority control is 
slightly different from the CPU+I/O priority control in cases 1 
to 3. Table V shows the comparison of CPU utilization of batch 
processing workloads with only CPU priority control and  
 

TABLE II. MODEL OF ONLINE PROCESSING WORKLOAD. 

Processing time 100 ms 

Interval of I/O 

requests 

One time at starting and ending of 

processing 

Number of I/O 

requests 
two times 

Length of data to 

write at a once 
1,000 bytes 

TABLE III. MODEL OF BATCH PROCESSING WORKLOAD. 

 Case 1 Case 2 Case 3 

Disk Busy Rate Low Middle High 

Processing time 10 s 

Interval of the I/O 

requests 
Equal distance 

Number of the 

writing times of 

the I /O requests 

20 times (once in 0.5 s) 

Sum of the 

processing time of 

the I/O requests 

1,000 ms 2,000 ms 4,000 ms 

Total length of 

data 

10,000,000 

bytes 

20,000,000 

bytes 

40,000,000  

bytes 

Length of data to 

write at a once 

500,000 

bytes 

1,000,000 

bytes 

2,000,000 

Bytes 

Divided length of 

data 

10,000 

bytes 

10,000 

byes 

10,000 

bytes 

TABLE IV. DISK BUSY RATE AND TOTAL CPU UTILIZATION. 

 Case 1 (%) Case 2 (%) Case 3 (%) 

DISK CPU DISK CPU DISK CPU 

No priority 23.5 97.3 40.0 95.5 72.2 91.1 

Only CPU 

priority  
16.5 80.0 28.2 79.5 53.7 80.3 

CPU＋I/O 

priority  
16.4 80.0 27.9 79.6 52.8 80.0 

TABLE V. CPU UTILIZATION (ONLINE PROCESSING WORKLOAD AND BATCH 

PROCESSING WORKLOAD). 

ON: online processing workload, BT: batch processing workload 

 Case 1 (%) Case 2 (%) Case 3 (%) 

ON BT ON BT ON BT 

No priority 49.8 47.5 50.2 45.3 49.9 41.2 

Only CPU 

priority 
50.0 30.0 53.5 26.0 49.3 31.0 

CPU+I/O 

priority 
50.0 30.0 50.0 29.6 50.0 30.0 

 

CPU+I/O priority control. The CPU utilization is lower for the 
no priority control. In other words, this shows that the CPU 
allotment for batch processing workloads decreases because the 
CPU allotment for online processing workloads increases. The 
average execution time using I/O priority control does not 
increase. In other words, the I/O priority control does not 
influence the average execution time of batch processing 
workloads. 

2) Evaluation 2 (The average waiting time until start of 
execution of the I/O request) 

Figure 8 shows the average waiting times until the start of 
execution of the I/O requests of online processing workloads 
and batch processing workloads. We make the following 
observations from Figure 8. 

(A) The average waiting time until start of execution the I/O 
request of online processing workloads is 0.4 ms in the case of 

Fig. 7. The average execution time. 
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CPU+I/O priority control. The average waiting time do not 
increase in cases 1 to 3. However, the waiting times of the no 
priority control and only CPU priority control becomes worse. 
In other words, the CPU+I/O priority control has a significant 
effect on average waiting time until the I/O request of online 
processing workloads is executed when the disk busy rate is 
high. 

(B) The average waiting time until the I/O request of batch 
processing workloads is executed do not differ in cases 1, 2, and 
3. In addition, the average waiting time of the I/O requests using 
CPU+I/O priority control is shorter than the only CPU priority 
control. Therefore, CPU+I/O priority control affects the 
average waiting time of I/O request in batch processing 
workload. However, in case 2, the average waiting time of the 
I/O request using the CPU+I/O priority control becomes 
slightly longer compared with only CPU priority control. 
Depending on the timing of CPU allotment, the waiting time of 
I/O requests might increase. 

VI. RELATED WORK 

Some subjects related to I/O requests in virtual machine 
environments have been investigated [1][2][3][4][5]. These 
studies clarified the effectiveness of priority control. However, 
the priority control of I/O requests in virtual machine 
environments is intended to bring the utilization rate of I/O paths 
closer to a utilization value assigned beforehand, and to reduce 
the influence on other virtual machine environments. Thus, the 
goal of these studies is different from the priority control of 
applications. A method was proposed to reduce the waiting time 
of I/O requests in consideration of the property of application or 
the execution time of I/O requests [6]. The proposed methods 
does not solve the problems of I/O requests of online processing 
workloads. Rather, it aims to improve the execution time of 
online processing workloads by predicting a processing flow 
using a characteristic of an application and by controlling 

interruptions of the time slice assigned to the CPU [7]. However, 
the priority control of I/O requests is also needed to improve the 
utilization of computer resources. Therefore, controlling the 
execution time of the I/O requests was proposed by coordinating 
their execution time [8]. In this proposal, the execution time of 
I/O requests was coordinated as the I/O request with high 
priority was executed with precedence. Then, this proposal 
showed that the waiting time of I/O requests with high priority 
becomes shorter. However, because the performance of the 
response time and processing throughput are important for IT 
systems, the performance deterioration by coordinating the 
execution time of I/O requests causes problems. 

VII. CONCLUSION AND FUTURE WORK 

Online processing workloads are not executed with 
precedence in systems with online processing workloads and 
batch processing workloads. We focused on the fact that the 
length of data of online processing workloads is short. Using our 
simulation model, we showed that it is possible to reduce the 
execution time of online processing workloads with a disk I/O 
control mechanism.  

Batch processing workloads should be divided into pieces of 
short-length data to increase the chances of processing online 
processing workloads. However, excessive division can 
decrease performance. Thus, we need to determine the 
appropriate data length. 

The implementation and evaluation of the proposed disk I/O 
control mechanism will be conducted in future work. 
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Fig.8. The average waiting time of the I/O requests. 
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