
1

Siva – The IPFS Search Engine
Nawras Khudhur and Satoshi Fujita

Department of Information Engineering, Hiroshima Univetsity
Higashi-Hiroshima, 739-8527, Japan.

Email: {nawras, fujita}@se.hiroshima-u.ac.jp

(preliminary version)

Abstract—In the world of increasing data, it becomes necessary
to upgrade the present structure of the network and go for the
decentralized network. Therefore, IPFS (InterPlanetary File Sys-
tem) made it possible to make a pure Peer-to-Peer (P2P), censor
resistant and permanent Web in which links will never die. De-
spite the merits of IPFS, finding data without knowing its unique
name is impossible since there is no search engine to index the
data and respond to queries. Our aim is to provide a decentral-
ized search engine to IPFS in which the nodes can search for any
content at any time and anywhere. we propose using DHT to han-
dle the indexed data and strengthen the search with adding re-
sult cache layer to the search engine alongside with a hash filter
to make cache lookup process fast and efficient. We used simula-
tion to test the caching effect on the search engine using a sampled
dataset from Yahoo Webscope. The simulation results show the
effect of caching on reducing query latency and effect of differ-
ent cache sizes on the cache hit-rate as the hit-rate decreases with
decreasing cache size.

Index Terms— DHT, p2p search engine, keyword searchable,
cached query, hash filter.

I. INTRODUCTION

The World Wide Web technology made a bold step towards a
new level called Web 3.0 with introducing IPFS (InterPlanetary
File System) which creates a pure Peer-to-Peer (P2P), censor
resistant and permanent Web in which links will never die [1].
IPFS combines several proven P2P technologies such as dis-
tributed hash tables (DHT), BitTorrent, Git, and Self-certifying
File System (SFS) [1] and creates a universal decentralized file
system that overcomes the weaknesses of the current web such
as a single point of failure. The existence of a single point of
failure tends to make it easier for different entities to control
the resource access by people as it occurred in Turkey when
the government blocked access to Wikipedia on April 2017
[2]. At that time the activists published the Turkish version
of Wikipedia on IPFS to avoid one point of failure. Thus, us-
ing IPFS it was possible to make Wikipedia uncensorable. An-
other important point to note is that, IPFS takes advantage of
the fact that each different file produces unique hash to create a
resource based network instead of location-based, that is, each
file is recognized by its hash, not by the location that shares
it, which helps to get the requested resource from all people
that share this resource and simultaneously without putting the
bandwidth burden on a single server.

Despite the fact that IPFS works great, currently, it doesn’t
support any kind of search through the P2P nodes except for an
exact file hash look-up. To elaborate, the IPFS stores the index
of files in a DHT that works as file availability DHT. The DHT

keeps the key-value records of each file hash and the providers’
address. In order for a user to find a file, He/She must know
the exact hash of the requested file then ask IPFS to find the
providers of the file to connect to them and download the data.
The lack of search makes it difficult for users to search for files
by its keywords or descriptions. Although this problem has not
been tackled by anyone in the context of P2P systems, there is
one project making attempts to create a generic search engine
for the IPFS called ipfs-search [3]. ipfs-search is a centralized
search engine based on the Elasticsearch that is a distributed,
RESTful search and analytics engine [4]. ipfs-search crawls
IPFS network by taking advantage of IPFS logs to monitor the
file add events of other peers. This technique is called DHT
sniffing, which means the ipfs-search server have the node(s) to
monitor DHT record updates between their node(s) and others
and catch the desired file add events. The crawler then catches
the content identifiers (CID, explained in II-C) of added files
and pushes them to some hash queue. The queue is processed
to distinguish the files and directories, then the files are fetched
and the result sent to Apache-Tika [5] for metadata extraction.
Finally, the extracted information of the crawled files will be
stored on Elasticsearch to be indexed and be available to search
for the public. While the ipfs-search is still in its early stages,
it provides users the ability to perform single/multiple keyword
searches. However, having all indices on the server will lead to
poor availability as well as scalability. For instance, when the
server is attacked or receives a huge number of requests, it may
overload and stop responding to the queries since the bandwidth
is limited. Moreover, It opposes the aim of the IPFS that seeks
distribution of data across the web not centralizing it. Admit-
tedly, considering service to a significant number of nodes will
make it very costly and less available due to a large amount of
bandwidth that is required for most of the search engines, in line
with that, the centralized search engine will limit the scalability
of the IPFS. Having a robust and dependable search ability that
is not affected by censorships or DDoS attacks is a must for the
next web seeing that unavailability of the search for required
data will limit the IPFS network in serving data to the restricted
or low connectivity areas.

Our goal is to build a decentralized search engine for IPFS
to help users query for the desired resources even when not
knowing the exact hash of them. The first step is indexing the
shared files by extracting and relating the keywords that de-
scribe each file then maintain such information in the p2p man-
ner to be served for efficient query processing. There are differ-

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 8, Number 2, pages 98–103, July 2019

– 98 –



2

ent ways to maintain such an index, as will be explained later,
we propose using DHT to handle the indexed data that works
independently on the file availability DHT used in IPFS. It’s
true that building a P2P search engine needs different fixes and
techniques to become practical and efficient. One of the vital
techniques to make query process rapid includes result cache.
As stated by [6], [7], different caching techniques for multiple
keyword searches reduces the bandwidth usage and also the la-
tency in the P2P network considerably. In Kobatake et al [6]
and Ariyoshi et al [7] the results show that the amount of re-
turned data reduced by 60% and 49.7% respectively. Support-
ing the P2P searches using the result caching techniques will
improve the latency and reduces the cost. In this paper, when
a peer in the IPFS network issuing a query to search for some
content, we draw on the DHT to respond to that query, mean-
while the requester node caches the list of results. Next time,
when another node tries to issue a query, first, it will look into
the cached result, if the query result was available, it returns
the result without conducting an actual search through the IPFS
network. Hence, we certainly increase the search result avail-
ability and reduce the latency.

II. IPFS BASICS

A. Overview

An IPFS network consists of several autonomous peers with
their own public and secret keys. Each of the peers is assigned
a unique identifier called NodeId which is obtained by apply-
ing an appropriate hash function to the public key. In IPFS all
peers can add files to the network to be shared with other peers.
Each shared file is assigned another identifier called CID (Con-
tent Identifier) using the same hash function based on the con-
tent of the file. With the notion of identifiers, content-based
file retrieval proceeds in the following manner: Initially, files
are associated with peers in such a way that the index to a file
is maintained by a peer to have the closest NodeId with the
CID of the file. The requester uses the mentioned fact to find
the responsible peers for holding indexing information about
the requested file and then retrieves the information. After get-
ting the index of a file from the responding peer, the retrieval
of a file is conducted by forwarding a query message from the
requester to peers which are likely to be associated with the
requested file through an appropriate P2P overlay, as will be
described later. Consequently, The index of the retrieved file
updates as the requester will also become a seeder for the ac-
quired content by automatically caching the file in a short-term
manner. To deal with the limited cache, The unused cache will
be garbage collected automatically by the peer itself. Alterna-
tively, the garbage collection process can be initiated manually
as well. In addition, the peer can exclude specific files from be-
ing garbage collected by pinning the file which makes the peer
permanent provider for the pinned file. That means when a file
is pinned, it’s guaranteed that it won’t get removed unless the
pinner removes it manually.

B. Data Structure used in the IPFS

Using IPFS, users can share any kind of data like text, video,
audio, even directories can be shared directly while keeping

their tree structure. IPFS uses MerkleDag [8] to keep the full
structure of files and directories. It is worth mentioning that
MerkleDag is deprecated by now for the favor of InterPlanetary
Linked Data (IPLD) [9] which is a more general data structure.
IPLD is meant to behave the same as regular URL and links in
the HTML.

In IPFS the files are located according to their content than
their location and served by multiple nodes to the requester just
like BitTorrent but in a single swarm. IPFS addresses items
through content identifier CID, which is a cryptographic hash
generated based on the content of the item. Any change to
an item will result in a different CID and two identical items
will produce the same CID. By this, IPFS can control the du-
plication and version of the items. Nevertheless, this behavior
causes the CID addressing to be unstable and adds difficulties to
share contents through IPFS network. To overcome this prob-
lem, IPFS provides a way to address files with a fixed link using
Inter-Planetary Name System (IPNS) [1] that works similar to
Domain Name System. By using IPNS, one can generate an
IPNS link to the shared files and guarantee that the IPNS link
will not change even when the file content changes. This tech-
nique makes it much easier to share the contents on IPFS.

C. Content Identifier (CID)

In IPFS each file and each block are given a unique fin-
gerprint that corresponds to the cryptographic hash of that
file/block and called content identifier or CID for short. The
CID is 46 characters long self-describing content-addressed
identifier, hashed using multi-hash protocol [10] that makes the
used hash function and addressing size recognizable from the
resulting hash by adding two leading bytes to the resulting hash.
To illustrate, when a node adds a file to IPFS, first it generates
the sha256 hash reflecting the content of the file, plus adding 2
leading bytes 0x12 and 0x20 that denotes the used hash func-
tion is sha256 and size is 32 bytes respectively (i.e. 12204660
DF5B7074A4E2C1DD7C07CC2EEA57C515F6E7A60E3FF0
16C3990FB48BA180 is the hash of Turkish Wikipedia version
on IPFS), then this hash encoded in base58btc that results in 23
byte CID (i.e. QmT5NvUtoM5nWFfrQdVrFtvGfKFmG7AHE
8P34isapyhCxX).

When adding content to IPFS, the content will be stored dif-
ferently according to its’ size. If the content is equal to or less
than 1KB then its directly stored in the DHT otherwise, the
content is divided into smaller blocks (256k each) and the DHT
stores references, which are the NodeIds of peers that can serve
the block [1]. In another way, CID is used as a key in the DHT
key-value store of IPFS.

Although the added item is still stored locally by the owner
peer, advertised throughout the network using the DHT. Hence,
when any node requests a specific CID, in the backend the re-
quester node will query the DHT for that CID to get NodeIds
that are seeding the requested content, then connections are es-
tablished to the responsible NodeIds and the content is trans-
ferred in blocks of data to the requester.

The blocks of data are exchanged with Bitswap protocol [1]
that is inspired by the BitTorrent protocol. The key difference
here from BitTorrent is that in BitTorrent the blocks being ex-

– 99 –



3

changed are all from a single torrent, while on IPFS there is one
big swarm of all IPFS data.

D. IPFS layers

The IPFS layers as shown in Figure 1, divided into three
main layers which are Moving data, Defining data and Using
data [11]. Moving data layer is called libp2p which is a net-
working layer of IPFS. It consists of a collection of different
P2P protocols and modules Figure 2a 2b.

libp2p consists of three sub-layers namely: network, rout-
ing and exchange layers. The network layer provides reli-
able and unreliable point-to-point connections between any two
IPFS nodes within the network, the routing layer provides peer
routing and content routing to find other nodes and requested
data on the network respectively. The IPFS Block Exchange
layer manages the transfer of the blocks of data among nodes.

Fig. 1. IPFS layers [11]

III. PROPOSED SOLUTION

The proposed solution as shown in Figure 3 is to build an in-
verted index of keywords called search-index for the published
contents on IPFS and give the search ability to users.

The search-index is a list of key-value pairs that connect
keywords to the published contents as ¡keyword, CID¿ pairs.
While text search is a query of a single/multiple keyword(s)
that may match with the extracted information of the files that
are shared over IPFS. The matching result is the list of CIDs of
files which contain the queried keyword(s). In case of multiple
keywords query, searches will include some set operations over

Fig. 2a. IPFS libp2p [11]

Fig. 2b. IPFS libp2p [11]

the single keyword results. For example for query Q = A ∧ B
where A,B ∈ {keywords}, the final result is calculated as
RA,B = RA ∩RB

Adding a result cache layer between the IPFS peers and the
search engine as shown in Figure 4 will make the searches more
efficient. that means when a peer makes a search, first, the
search engine looks for the cache, if the result for that query
was cached then it is fetched by the requester. Otherwise, the
requester sends the query to the search-index. To further extend
the efficiency of the search engine, we add a hash filter layer
to give a faster answer about the existence of the issued query
result cache.

Fig. 3. Network Architecture

A. Architecture

The architecture of the proposed search engine consists of
the followings:

• The IPFS peers
The IPFS peers make up the P2P network.

• IPFS search engine
Serves the main keyword index (search-index) to IPFS

– 100 –



4

Fig. 4. Result Cache Structure

peers and it returns the result of the query (list of CIDs)
by looking up the indexed data.

• Result cache layer
The responsible layer for caching query results of common
queries and serves it again to the peers.

• Hash filter layer
Increases the efficiency of finding the caches for the re-
quested queries.

B. Method

Each and every peer will participate in building and main-
taining the inverted index for the files shared over IPFS. The
inverted index called search-index is stored in a DHT separate
from the built-in routing DHT. Using the separate DHT than
built-in routing DHT lets our search engine implementation be
flexible and easy to adapt to any changes on IPFS. Besides,
each node stores a portion of the search-index that is closer to
their NodeIds. Additionally, we use result caching techniques
to make the searching process more efficient and less traffic
hungry. To further clarify, when a node adds a file to IPFS, it
can choose whether to index and add or just add the file. In the
case of index and add, the file goes through a set of processes
to be indexed then added. The steps are explained as:

1) Metadata Extraction: In the first step of adding a file to
IPFS, the file is sent to a metadata extractor such as Apache
Tika [5] to extract the basic information out of the file.

2) Keyword Extraction: After metadata extraction, if the
added file is a text file, the text content is analyzed using TF-
IDF in order to weight the keywords. Thus the rare keywords
are chosen to represent the document.

3) Building The Inverted Index: When the metadata and
the weighted keyword list is generated, the CID of the pro-
cessed file with its list of representative keywords and metadata
is sent to the corresponding peers to be inserted/updated in their
search-index DHT portion.

As a result, the added file is indexed and available to query
according to its’ extracted data.

C. Cache generation

In principle, when any peer in the IPFS network makes a
query search, the hash of the query and a part of the result is
stored in a form of database file (such as OrbitDB [12] which is
a key-value store, serverless, distributed, peer-to-peer database
that uses IPFS as its data storage) by the issuer node, then it
will be served again to other peers who query for the same key-
words, that means the query issuer is responsible for caching

Fig. 5. Search process & cache generation flow chart

the results, see Fig 5. So, the process is as following: when a
peer issues a query search Q, at first it will check the cached
data for the requested query, if the query result was cached
by the node itself then the result will be returned to the user
without proceeding to the text search, otherwise start initiating
the search request to search-index but during the routing of the
query Q, if any routing peers happened to have the required re-
sult in their cache, interrupt the searching and return the result.
If there were no cached results for query Q among the routing
peers, then the query Q will eventually reach the peers who are
responsible for the corresponding key part of the search-index,
then the actual result will be returned.

The cache is stored in the key-value form, the key is the query
term(s) and the value is the text result of the query search. Since
the cache storage is limited and query results always get cached
once it’s issued, when cache storage is full the cache replace-
ment algorithm will be applied to push the new cached results
into the result cache storage.

D. Hash Filter on Cache Results

Hash filters are used as membership testing against a set of
the existing data. Hash filter can respond by ensuring that the
item is not a member of the set or the item is probably a member
of the set, such probability is called false positive probability.

Cuckoo filter is a new data structure, represented in a paper
by Fan et al in 2014 [13]. Cuckoo filters improve upon the
scheme of the bloom filter by giving deletion, restricted count-
ing, and a bounded false positive probability, whereas still keep-
ing up a similar space complexity. Customarily, the cuckoo fil-
ter uses two hash functions and two layers of arrays to store the
hash of the item, if the bucket in the first layer was empty then
push the value into it otherwise push the value into the second
layer.

– 101 –



5

Because our cache result is not static, which means it will be
updated or deleted after some period of time, we need to have
a hash filter that can support item deletion. The cuckoo hash
filter provides such an ability. So, our search algorithm will be
changed as the following:

• User x makes a query search for some query Q.
• The cuckoo filter used to find out if the query Q exists in

the cached result or not.
• If query result was cached, return it to the requester.
• otherwise, proceed to the text search on the search-index

IV. SIMULATION MODEL

The evaluation of the proposed idea is done through simula-
tion using Peersim [14]. A DHT is used to simulate the envi-
ronment and search-index distribution over IPFS. The P2P envi-
ronment set to be static, which means the state of peers doesn’t
change during the simulation. We used sampled dataset from
Yahoo! Search Engine provided by Yahoo! Webscope [15].
The dataset contains 1500000 queries in total with 1198 unique
queries, see Fig 6.

Fig. 6. Yahoo! Webscope dataset

The population of the search-index is done by processing the
dataset and put it in the search-index DHT, the search-index
is distributed according to the used DHT algorithm (Kademlia
[16] used in this simulation) and each peer in the network is
responsible to maintain a part of search-index. The query re-
sults are cached only if the query was answered before, and it
will be stored according to the used DHT algorithm. We also
consider the query locality [17] to increase the caching perfor-
mance. As the cache capacity is limited, the query results will
not be cached completely rather, the first few results will be
cached. In addition, the cache will eventually expire according
to a cache replacement scheme (We have used least recently
used scheme in this simulation) to prevent memory overflow.
To compare and see how much cache capacity is needed to en-
sure the reasonable hit rate, the cache size will vary and will be
predetermined through parameters.

The simulation started with peers sharing no data and empty
search-index, they gradually built their search-index, then the

Fig. 7a. Simulation Results - Network Size 500

Fig. 7b. Simulation Results - Network Size 1000

search process issued 10100 queries over 3 hours of simula-
tion time, and cache size starts from 0 unit to 20 units, each
unit represents storage for one query result. Queries were cho-
sen randomly but influenced by the frequency of the queries in
the dataset. We tested different settings of cache size from 0
to 20 units adding 5 units each time for two different network
size 500 nodes and 1000 nodes. The results show that adding
cache to the search process makes queries take less time on av-
erage, from 1870ms per queries when 0 cache, to 1476ms when
20unit of cache is used, which is about 22% reduction. Addi-
tionally, the cache hit-rate also increased from 0 to 3372 total
hits, see Fig 7a. on the other hand cache seems less effective
when network size grows higher as shown in Fig 7b that queries
take 1937ms on average when 0 cache is used and reduced to
1696ms for 20 unit of cache, which is about 12% reduction in
time, and cache hit increased from 0 hits to the total of 2003
hits.

V. CONCLUSION

We showed the effect of caching on reducing query latency
and effect of different cache sizes on the cache hit-rate as the
hit-rate decreases with decreasing cache size.

Since multiple keyword searches create more burden on the
network and result caching is more effective in such environ-
ment, We have to test the multiple keyword searches as well as
applying the hash filter layer to the search engine and compare
the cache effectiveness with current results.

REFERENCES
[1] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv

preprint arXiv:1407.3561, 2014.
[2] Turkeyblocks, “Wikipedia blocked in turkey,” https://turkeyblocks.org/

2017/04/29/wikipedia-blocked-turkey/, accessed: November 26, 2018.

– 102 –



6

[3] M. de Bruin, “Search engine for the interplanetary filesystem,” https://
github.com/ipfs-search/ipfs-search, accessed: October 10, 2018.

[4] “Elasticsearch,” https://www.elastic.co/products/elasticsearch, accessed:
October 10, 2018.

[5] “Apache tika - a content analysis toolkit,” https://tika.apache.org/, ac-
cessed: October 12, 2018.

[6] K. Kobatake, S. Tagashira, and S. Fujita, “A new caching technique
to support conjunctive queries in p2p dht,” IEICE - Trans. Inf. Syst.,
vol. E91-D, no. 4, pp. 1023–1031, Apr. 2008. [Online]. Available:
http://dx.doi.org/10.1093/ietisy/e91-d.4.1023

[7] T. Ariyoshi and S. Fujita, “Efficient processing of conjunctive queries in
p2p dhts using bloom filter,” in International Symposium on Parallel and
Distributed Processing with Applications, Sept 2010, pp. 458–464.

[8] “The merkledag,” https://github.com/ipfs/specs/tree/master/merkledag,
accessed: October 23, 2018.

[9] “Ipld,” https://github.com/ipld/ipld, accessed: October 23, 2018.
[10] “Multihash,” https://github.com/multiformats/multihash, accessed: Octo-

ber 23, 2018.
[11] “Libp2p,” https://github.com/libp2p/libp2p, accessed: October 23, 2018.
[12] “Orbit-db,” https://github.com/orbitdb/orbit-db, accessed: October 12,

2018.
[13] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,

“Cuckoo filter: Practically better than bloom,” in Proceedings of
the 10th ACM International on Conference on Emerging Networking
Experiments and Technologies, ser. CoNEXT ’14. New York,
NY, USA: ACM, 2014, pp. 75–88. [Online]. Available: http:
//doi.acm.org/10.1145/2674005.2674994

[14] A. Montresor and M. Jelasity, “PeerSim: A scalable P2P simulator,” in
Proc. of the 9th Int. Conference on Peer-to-Peer (P2P’09), Seattle, WA,
Sep. 2009, pp. 99–100.

[15] “Yahoo! webscope dataset anonymized yahoo! search logs with
relevance judgments version 1.0,” http://labs.yahoo.com/Academic
Relations.

[16] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer
information system based on the xor metric,” in Revised Papers from the
First International Workshop on Peer-to-Peer Systems, ser. IPTPS ’01.
London, UK, UK: Springer-Verlag, 2002, pp. 53–65. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646334.687801

[17] P. J. Denning, “The locality principle,” Commun. ACM, vol. 48, no. 7,
pp. 19–24, Jul. 2005. [Online]. Available: http://doi.acm.org/10.1145/
1070838.1070856

– 103 –


