Bulletin of Networking, Computing, Systems, and Software — www.bncss.org, ISSN 2186-5140

Volume 8, Number 2, pages 133-138, July 2019

Design and Implementation of Circuit Switched
Scheduling in Flow-in-Cloud Systems

Yao Hu, Michihiro Koibuchi
Information Systems Architecture Science Research Division
National Institute of Informatics
2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, Japan 101-8430
{huyao, koibuchi} @nii.ac.jp

Abstract—The FiC (Flow-in-Cloud) project aims at an efficient
AI computing system composed of FPGA-based switching nodes
called FiC-SWs, which are connected by a number of serial
links. Unlike other multi-FPGA packet-switching systems, the
switch fabric is realized by circuit switching implemented with
time-division multiplexing (TDM) for predictable communication
latency between any compute nodes. One of major challenges in
FiC systems is to effectively schedule applications to achieve an
efficient task execution system using limited available network re-
sources. In this work, we present the design and implementation
of circuit switched scheduling in FiC systems.

Index Terms—Parallel computing, FPGA, circuit switching, job
scheduling

I. INTRODUCTION

In recent years, specific target applications such as Al
accelerators and deep learning machines emerge on large-
scale parallel computing systems [1]. The FiC (Flow-in-Cloud)
project [2] aims at combining many heterogeneous computing
nodes, such as energy efficient GPUs and FPGAs, which are
directly connected by a wide-bandwidth network. FiC-SW is
an FPGA-based switching node for a FiC system. Each FiC-
SW is connected to its neighbors through bidirectional links.
Such a parallel computing system consists of an interconnec-
tion of many FiC-SWs to enable a large number of compute
nodes to communicate with each other by propagating packets
in the network.

Figure 1 depicts a FiC system consisting of FPGA switch-
ing boards (i.e., FiC-SWs) with an FPGA and low-power
GPUs each. The FPGA switching boards are used as network
switches as well as data processing accelerators, which are
connected by high-speed serial links such as optical intercon-
nects. Unlike other multi-FPGA packet-switching systems, the
switch fabric is realized by circuit switching implemented with
time-division multiplexing (TDM) for predictable communi-
cation latency between any computing nodes. The network
keeps the common benefits of the traditional circuit switching
technology, e.g., it provides a dedicated communication chan-
nel (circuit) for each communication node pair. To support
more than one path on a link, we introduce the technology
of clock-by-clock time-division multiplexing. Each link can
have multiple time slots, and each input slot is associated to
an output slot according to its routing table. The number of
time slots and the routing table are statically set before a job
or a part of a job is executed, and thus they are basically not

=TT Clock Pointer Communication
Link 1

High Speed
FPGABoard Serig| Link FPGA Board

ficsw {—— Fic-sw

Input Port 1 =" > Output Port 1

Link2

Circuit Switching

with TDM Input Port 2 =

t> Output Port 2

FPGA Board FPGA Board Link3

FiCSW) FiCsw

Input Port 3 —' > Output Port 3

Link4

Input Port 4 —° t» Output Port 4

i \
1 GPU [i GPU [\
| B ——

Figure 1. A FiC system using TDM-based FPGA circuit switching.

changed on the fly. Each FiC-SW in the network caches (reads)
incoming data in an input slot (buffer) and later transfers
(writes) it to an output slot (buffer). The connection between
the input slot and the output slot is established beforehand.
The number of allocated time slots is a direct factor to affect
the communication latency. As the size of the network is
scaled up, the transmission delay between distant FiC-SWs
increases significantly, and it results in higher power consump-
tion and lower communication performance. In our previous
works [3] [4], we have proposed a case for fine-grained circuit-
switched networks to make predictable the lowest bandwidth
and the largest latency for every communication node pair.

One of major challenges in FiC systems is to achieve an
efficient task execution system using limited available network
resources. To share the limited network resources among many
applications with ever-increasing demand in FiC systems, a
high-performance communication among compute nodes is
extremely essential. Efficient job scheduling can perform an
important role in boosting the communication performance
with these network resources and their interconnection net-
works. In this study, we explore the use of a circuit switched
job scheduling method rather than traditional packet switch-
ing mechanisms to efficiently support diverse communication
patterns in our target FiC interconnection networks.

The rest of this paper is organized as follows. Section II
describes the mechanism of the FiC system and its intercon-
nects. Section III presents the design and implementation of
circuit switched scheduling in FiC systems. Section IV shows
several preliminary evaluation results. Section V concludes

-133 -

Setup Req. Setup Req. Setup Req.
(t=0) (t=1) (t=2)
SW [, SW

Setup Ack. Setup Ack.
t=1) (t=2)
Figure 2. Procedures of circuit setup.

with a summary of our findings in this paper.

II. CIRcUIT SWITCHED F1C INTERCONNECTS
A. Circuit Setup and Data Transfer

In FiC systems, circuits are dynamically created for each
flow. The setup request reserves a default (low) bandwidth for
each flow. When an application requires a higher bandwidth,
the bandwidth allocation can be combined to achieve an
aggregated higher bandwidth. Figure 2 illustrates the setup
process using a simple 2-host 2-switch topology, where the
source host tries to establish a flow to the destination host. The
source host initiates a setup request, which travels through all
intermediate switches to reserve bandwidth, and finally reaches
the destination host. The source host does not wait a full round
trip delay before it receives an ACK. The switches respond
with ACKs immediately after processing setup requests. The
ACK travels to the previous switch or host, informing it that
the current switch is ready to accept data. After the switch
processes the setup request, it simultaneously forwards the
setup request to the next hop switch and sends an ACK to
the previous hop switch, which relays it to the source host.
When the source host receives a setup ACK, it begins sending
data on the connection. In this protocol, the source host does
not wait for a full round trip delay before pumping data into
the network.

If the connection is rejected by some switch along the
route (e.g., a common available time slot cannot be found), a
teardown message is sent along the reverse path to the source
host, releasing resources allocated in the switches it passes.
Similarly, when a switch or a link fails, the neighboring switch
detects the error and tears down all existing connections. When
the source host receives the teardown message, it attempts to
use an alternative switch or to use another routing path to
create a new connection. The data injected into the connection
where a setup request subsequently failed is discarded by the
network, and resent by the source host after another circuit is
successfully set up.

B. Circuit Switching with Time Division Multiplexing

One port of the swiching node, FiC-SW, is connected to a
compute node or a neighboring FiC-SW. Each port consists
of one or several links and each link consists of several time
slots (buffers). The volume of one time slot (buffer) is the
size of the data received and accommodated within one cycle.

s1[M s1
PORT 1—»27 8211 H 82 —> PORT 1
v S4[] I s4
s1] 0 s1
PORT 2—f»' 2%— H 827 - PORT2
Vsig 0 sS4
$iH A &
PORT 3—{» = H —+> PORT 3
U iH SR
3 A
PORT 4 8214 E 820~ PORT4
s4[] sS4
Figure 3. Multicast is supported in FiC systems.
Frame1 Frame(
SISISISISISISISISISISISIS|S|ISIS
TEEE —
61514131211101716151413]2]110 fime
—

Frame Time

Figure 4. Example of TDM frames on the serial link.

The connection between an input slot and an output slot is
established before the data transfer. Updating of the connection
is supported after circuit reconfiguration. The read or write
operation on the input or output side tours the time slots
one by one in cycles. On the same time slot, the read and
write operations are synchronized with the same frequency,
thus no conflict like write-after-read or read-after-write occurs.
Because each connection is allocated one or multiple time slots
during the whole communication, for each communication
node pair its link bandwidth can be guaranteed and its end-to-
end latency can be predictable. Note that here the connection
not only refers to the normal 1-to-1 unicast, but also supports
the 1-to-m multicast (Fig. 3) so as to improve the whole
network transfer efficiency.

Figure 4 depicts an example of data frame which is com-
posed of 8 time slots each. If there are n time slots allocated
to one link, and a communication occupies m (m < n)
slots, its bandwidth is m/n link bandwidth. Therefore, the
end-to-end latency of any communication in the network can
be guaranteed or predictable. The end-to-end reconfiguration
time is defined as ¢, and thus the scheduling reconfiguration
time can be calculated as n x t.. The most important thing
for the FiC-SW design is to get the minimum necessary
number of time slots (N). On one hand, a large number
of time slots can cause large end-to-end latency because of
iterative time slot access. On the other hand, a small number
of time slots may result in long queuing or even conflict
among multiple communications at the same port. When the
FiC interconnection network is composed of identical FiC-
SWs installing the same number of time slots, the minimum
necessary number of slots (V) is a direct factor to affect the

—134-

Figure 5.

The prototype FPGA board of FiC-SW [2].

whole network latency performance.

C. Prototype FPGA Switching Board (FiC-SW)

The work [2] has developed a prototype FPGA board of
FiC-SW, as shown in Fig. 5. It provides 32 high speed serial
lanes with 9.9Gbps bandwidth at maximum. There are 8 full-
duplex links by using four lanes for each direction. Here, the
9.9Gbps high speed serial connection is called a lane, and the
group of four lanes which connects a pair of nodes is called a
link. As for payload, each lane has 8.5Gbps data rate and each
link has a total of 34Gbps data rate. After deserialization with
64b/66b coding, the input data are translated into 150MHz 64-
bit signals. These 64-bit signals are handed off to the FPGA
internal 100MHz clock domain. After ECC decoding, an 85-
bit payload is obtained in every 100MHz clock cycle. The
FiC system uses the same clock source for the communicating
compute nodes in the entire system. Therefore, there is no
clock frequency difference between a sender and a receiver,
and the flow control to compensate possible slight frequency
difference between the sender and the receiver is not required.

The FiC-SW FPGA board is equipped with two 16GB
DRAM modules, and each can be accessed with 72-bit data
width to store streaming data or weight data for Convolutional
Neural Network (CNN). In order to provide a large number
of links and DRAM modules, a high-end FPGA in the middle
rank family, Xilinx Kintex Ultrascale XCKUO095, is used. It is
one of the most cost-efficient FPGAs available in the current
market. For configuration and data management, a Raspberry
Pi 3 card is mounted as a daughter board which can be
connected with Ethernet.

III. CIRCUIT SWITCHED SCHEDULER

We developed a circuit switched scheduler in C++ [5] for
job dispatching and scheduling in FiC systems. The program
supports traditional typical traffic patterns [6] [7] and any
custom traffic patterns injected in circuit switched networks,
including uniform, bit reversal, matrix transpose, neighbor,
perfect shuffle, butterfly, bit complement and tornado. The
program supports to estimate the minimum necessary number
of slots (IV), and generate the routing table for each switch in a
circuit switched network with any specified traffic pattern. The
program is also implemented to schedule the jobs defined in

a workload file with an existing or customized job scheduling
strategy, which is elaborated in this section.

A. Key Entity Types

1) Pair:

o pair_id: ID of the node pair (source and destination)

o flow_id: ID of the data flow, which contains one or
multiple node pairs

 job_id: ID of the job, which contains one or multiple data
flows

« paths: links the node pair passes through

« source: source node of the pair

o destination: destination node of the pair

« alloc_slot: allocated slot number for the node pair

o hops: number of hops of the node pair

2) Flow:

o pairs_id: IDs of contained node pairs

e flow_id: ID of the data flow

o paths: links the data flow passes through

o alloc_slot: allocated slot number for the data flow

3) Job:

e time_submit: submission time of the job

e« time_run: runtime or execution time of the job

o node_num: requested number of compute nodes

e pairs: logical communication node pairs within the job

e pairs_m: physical communication node pairs on the sys-
tem

e job_id: ID of the job

« time_dispatch: dispatched time of the job

o nodes: list of occupied compute nodes

o flows: IDs of contained data flows

B. Workload File

The scheduler recognizes the job list enclosed in a workload
file. Typically, a workload file includes at least the following
items:

o submit_time: submission time of the job

e run_time: runtime or execution time of the job

o node_num: requested number of compute nodes

« source: ID of the source node

o destination: ID of the destination node

o flow_id: ID of the belonging flow

¢ job_id: ID of the belonging job

We use a common approach to model parallel “rigid”
jobs [8], which refer to jobs that use a fixed number of com-
pute nodes during runtime. As a job comes in, the scheduler
evaluates the job requirements, places it into the job queue
and prioritizes it according to the job’s requested number of
compute nodes. The priority to allocate unused compute nodes
is determined by a specific scheduling policy, e.g., FCFS [9]
and backfilling [10] [11]. Each compute node runs only one
job at a time. Currently, the processing time used for job
execution is the runtime as specified in a workload file. The
simulation time starts from the first job submission and ends
until all the jobs are finished.

-135-

thread
thread thread

circuit switch table

Main() submit_jobs release_nodes
Output s
P Job List
i vector<Job> |
____________________ Workload (Pair):
Job ' Submit time, Runtime, Number of nodes,
vector<Pair> Group [Source, Destination, Flow ID], JobID ~ _, process logic

data or message

Figure 6. Processing logic of our circuit switched scheduler.

S0S1S2S3
SIotLUT|O|1|1|1| |0|0|1|0|

Setup Req. Setup Req.

SW o
Setup Ack. | ERRRA

ofof1]o

0: Occupied, 1: Available

Figure 7. Allocation of slot number.

C. Processing Logic
The program of our circuit switched scheduler is imple-

mented with the multi-threaded programming model, which
includes the following three basic threads:

« main: responsible for resolving user jobs and generating
simulation results

o submit_jobs: responsible for submitting and dispatching
user jobs according to specified requirements in work-
loads

« release_nodes: responsible for releasing occupied com-
pute nodes after related jobs are finished

After a user job is dispatched from the job queue, the routes
are calculated for the communicating node pairs. Usually,
the communication travels via the shortest path between the
commnicating nodes. In the meantime, a slot number is
assigned for each data flow respectively within the job, and
the intermediate switches along the path need to update their
routing tables. An illustration of the processing logic of our
circuit switched scheduler is shown in Fig. 6.

D. Slot Allocation

Figure 7 gives a simple example of how slot number is
allocated. When a setup request reaches the switch, a common
available time slot should be identified if it exists. This
typically requires all switches on the path to coordinate this
request. When the switch services an incoming setup request
from the previous hop, it first ANDs the received slot LUT
with its own slot LUT to identify a common available slot.

0 A1 2 "3
| Sn
@] Src_ID Dst_ID Flow_ID Slot#
5 5 0 a m
5 1 a m
5 2 a m
5 3 b n

Figure 8. The node pairs with the same flow ID should be assigned the same
slot number.

Finished Flow

] NewFlow

Figure 9. The occupied slot will be released for the use of a future data
flow after the current application is finished.

It then forwards the setup request together with the new slot
LUT to the next switch along the path. If a common available
slot is found, the swith also sends an ACK to the previous
hop with the new slot LUT. When the next switch responds
with an ACK later, the slot LUT update in the current switch
associates its own common available slot with the local slot
of the next switch (not shown). Eventually, an available slot is
assigned to the sending data flow. If a common available slot
cannot be found, the system should wait for the release of an
occupied slot.

Notice that, the node pairs with the same flow ID should
be assigned the same slot number. For example, as shown in
Fig. 8, the node pairs (5, 0), (5, 1) and (5, 2) have the same
flow ID a, therefore they are assigned the same slot number m.
In other words, the multicast can be also realized by specifying
the same flow ID to multiple communicating node pairs. In
this example, the node pair (5, 3) with the flow ID b is an usual
unicast communication, which is assigned the slot number n.

The occupied slot will be released for the use of a future
data flow after the current application is finished. As shown in
Fig. 9, after the communications (3, 4) and (2, 5) are finished,
their occuiped slots SO and S/ are released. Thus the new
communication (0, 12) can be allocated the slot SO again.
Similarly, after the communications (5, 10), (7, 14) and (9, 14)
are finished, their occupied slots SO, S1 and S2 are released.
Because the communication (11, 14) occupying the slot SO
still exists in the network, the slot SO cannot be repeatedly
assigned to the new communication (5, 14). It is prohibited
that two flows occuping the same slot number are sent towards

-136 -

A:lo
|

H

vV
| N w

=Y
o AW TS
e*—

10 11

1 2

| |

s (2] e 35
| |

9

|

IS

<
.
Ne

13 14 15

switch No. @ # of overlapped communications

Figure 10. The minimum necessary number of slots (/V) with an example
communication pattern over a 2-D mesh network.

the same destination node, because this may hurt or damage
the end host. Therefore, instead, the slot S/ can be assigned
to the new communication (5, 14).

E. Number of Slots

We analyze the minimum necessary number of slots (V) of
all switches with various famous communication patterns over
the FiC interconnection networks. The value of IV is equal to
the maximum number of overlapped communications on the
same link, if one communication consumes one slot.

We calculate the maximum number of overlapped commu-
nications on the same link by using a modified version of
an on-chip data transfer algorithm [12]. Firstly, we divide a
parallel application into a set of small parallel tasks, which
are mapped to respective communication node pairs as the
communication pattern. Secondly, for all communication node
pairs we calculate the communication path from a source node
to its destination node. Finally, we get the maximum number
of overlapped communications going through the same switch
port, which is equal to the value of N for the switch and
network design.

Figure 10 shows a 2-D (4 x 4) mesh network topology
with an example communication pattern. Let ¢(s,d) denote
the communication from switch s to switch d, and let I(u,v)
denote the link from switch u to switch v. Note that we
assume full-duplex links, that is, two communications going
along opposite directions do not interfere with each other
and they are treated separately. Therefore, the communication
¢(s,d) is not equal to the communication ¢(d,s) and the
link [(u,v) is not equal to the link I(v,w). In this network,
the maximum number of overlapped communications ¢(0, 12),
¢(1,8), ¢(2,12), ¢(3,8) and ¢(4,8) on the same link I(4, 8) is
5, thus N = 5.

F. Routing Table

The information of slot number is essentially important in
our design of circuit switched network in FiC systems. Each
switch in FiC systems maintains a routing table which records
the relationship of input port, output port and slot number.

th to S1S0
Input Port O _ TDM Output Port O
Circuit
Switch

Input Port 1 —\P Output Port 1

i

Lo [h
slot 0 Y*Out0 [Pout 1
slot 1 [YOut 1 [*Out O

Figure 11. An illustration of routing table of a 2 x 2 switch.

S0 SW1
H ST vl

& \ NIC \\
S3 W 2
sS4 S
S5
S6

Job Queue <7

SWO0
Figure 12. Each slot is equipped with a job queue in our circuit switched

network.

Here, the slot number is assigned from 0, thus it should be
less than the minimum nessary number of slots (V) in a circuit
switched network.

Figure 11 depicts a simple example of a 2 x 2 switch. From
the input port O, the data cells B and A are sent via the output
ports O (slot SO) and 1 (slot S7). From the input port 1, the
data cells D and C are sent via the output ports 1 (slot SO)
and O (slot S7).

G. Scheduling Strategy

Unlike in a traditional packet switched network, each slot
is equipped with a job queue in our circuit switched network,
as shown in Fig. 12. The user jobs in the queue are dispatched
following a specific scheduling policy such as FCFS [9] and
backfilling [10] [11]. Considering that the circuit switched
network benefits from large data flows rather than small
data flows due to smaller reconfiguration overhead, we can
also apply the large-flow-first (LFF) policy as the scheduling
strategy in FiC systems. In other words, compared to a small
data flow, a larger data flow usually has a higher priority
to be dispatched to minimize the number of reconfigurations
especially at a busy period on the system.

IV. PRELIMINARY EVALUATION
A. Number of Slots

Table 1 shows the values of N in different networks with
various communication patterns. We assume that one end node
is connected to one switch. It can be seen that, as the network
size increases, the value of IV becomes large. For example, for
the communication pattern of uniform, at least 4, 6, 11, 14 and

-137-

Table 1.

The minimum necessary number of slots (V) for different communication patterns.

of end nodes uniform bit reversal matrix transpose neighbor perfect shuffle butterfly bit complement tornado

16 (2-D mesh, 4 x 4) 4 3 3 3 2 2 2 2

64 (2-D mesh, 8 x 8) 6 7 7 4 4 4 4 4

256 (2-D mesh, 16 x 16) 11 15 15 3 8 8 8 8
1024 (2-D mesh, 32 x 32) 14 31 31 4 16 16 16 16
4096 (2-D mesh, 64 x 64) 28 63 63 7 32 32 32 32
4096 (3-D mesh, 16 x 16 x 16) 13 15 48 8 8 8 8 8
4096 (4-D mesh, 8 x 8 x 8 x 8) 9 56 56 5 4 4 4 4

=== Routing path for each node pair ===

Pair ID 4 (Flow ID @, Job 1):
SW @ (port @—>1) - [slot @] —> SW 1 (port 2->0)
Pair ID 5 (Flow ID @, Job 2):
SW 6 (port 8->1) — [slot @] —> SW 7 (port 2->0)
Pair ID 6 (Flow ID 1, Job 2):
SW 5 (port 8—>1) - [slot @] —> SW 6 (port 2->4) - [slot @] —> SW 2 (port 3->8)

=== Port information for each switch ===
SW e :
Port @ (Slot @) -—> Port 1 (Slot 0),
Port 1 (Slot 1) ——> Port 3 (Slot 1),
SW1:
Port 2 (Slot @) -—> Port @ (Slot 0),
Port 1 (Slot 1) ——> Port 2 (Slot 1),
SW 2 :
Port 3 (Slot @) -—> Port @ (Slot 0),
Port 1 (Slot 1) ——> Port 2 (Slot 1),

from node @ to node 1 (Pair ID 4, Flow ID @, Job 1)
from node 3 to node 8 (Pair ID 8, Flow ID 2, Job 2)

from node @ to node 1 (Pair ID 4, Flow ID @, Job 1)
from node 3 to node 8 (Pair ID 8, Flow ID 2, Job 2)

from node 5 to node 2 (Pair ID 6, Flow ID 1, Job 2)
from node 3 to node 8 (Pair ID 8, Flow ID 2, Job 2)

Figure 13. Example run of our circuit switched scheduler.

28 time slots are required if a 2-D mesh network is composed
of 16, 64, 256, 1024 and 4096 switches, respectively. Besides,
if the network size is the same, a higher-dimension network
requires less number of slots. For instance, in 4096-node
networks with the uniform communication pattern, 2-D mesh,
3-D mesh and 4-D mesh require at least 28, 13 and 9 slots,
respectively.

B. Output of Circuit Switched Scheduler

The program of our circuit switched scheduler is run to
simulate job dispatching and scheduling in FiC systems.
Simulation results are sorted by scheduling clocks (e.g., tl,
t5, t7, t9, etc.) when a new incoming job is dispatched or an
existing running job is finished. For each scheduling clock,
there are two types of simulation output files. One type is
the system log file which records the current job status and
resource utilization on the system. The other type is the current
routing table for each switch in the network, which records the
relationship of input port, output port and slot number.

We run the circuit switched scheduler using a small work-
load of nearly 100 jobs with random arrival timings for a
Poisson process. Each job specifies the required number (1, 2,
4, 8 and 16) of compute nodes in a 2-D (4 x 4) mesh network.
In each output log file at a certain scheduling cycle, as shown
in Fig. 13, two kinds of key information are generated, routing
path for each node pair and port information for each switch.
For both the records, the information of slot number is used
to adjust the job scheduling strategy and improve the link
utilization over the whole network. In the future, we will
customize more efficient job scheduling algorithms using a
real supercomputer trace of user jobs taken from [13] for FiC
systems.

V. CONCLUSION

In this work, we introduced FiC (Flow-in-Cloud), the first
large-scale multi-FPGA system equipped with circuit switch-
ing network. In a FiC system, FiC-SW is an FPGA-based
switching node which is implemented with time-division mul-
tiplexing (TDM). We presented the design and implemenation
of circuit switched scheduling which depends on multiplexing
of time slots in each FiC-SW switching node to increase link
utilization and communication performance in FiC systems.
Preliminary evaluation results showed the effectiveness and
efficiency of our circuit switched scheduler for FiC systems.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber 19K20263.

REFERENCES

[1] “Nvidia dgx-1,” https://www.nvidia.com/ja-jp/data-center/dgx-1/.

[2] K. Musha, T. Kudoh, and H. Amano, “Deep learning on high perfor-
mance fpga switching boards: Flow-in-cloud,” in Applied Reconfigurable
Computing. Architectures, Tools, and Applications, N. Voros, M. Hueb-
ner, G. Keramidas, D. Goehringer, C. Antonopoulos, and P. C. Diniz,
Eds. Cham: Springer International Publishing, 2018, pp. 43-54.

[3] Y. Hu, T. Kudoh, and M. Koibuchi, “Reducing number of slots in circuit-
switched network for parallel computers,” IEICE Technical Report, vol.
117, no. 153, pp. 111-116, July 2017.

[4] ——, “A case of electrical circuit switched interconnection network for
parallel computers,” in The 18th International Conference on Parallel
and Distributed Computing, Applications and Technologies (PDCAT’
17), Taipei Taiwan, December 2017.

[5] [Online]. Available:
circuit-switch-scheduler

[6] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: an
engineering approach. Morgan Kaufmann, 2002.

[71 W. D. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann, 2003.

[8]1 D. G. Feitelson, Workload Modeling for Computer Systems Performance
Evaluation. Cambridge University Press, March 2015.

[9] J. Krallmann, U. Schwiegelshohn, and R. Yahyapour, “On the design and

evaluation of job scheduling algorithms,” in Workshop on Job Scheduling

Strategies for Parallel Processing, 1999, pp. 17-42.

J. Skovira, W. Chan, H. Zhou, and D. Lifka, “The easy - loadleveler

api project,” in Workshop on Job Scheduling Strategies for Parallel

Processing, 1996, pp. 41-47.

A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability, work-

loads, and user runtime estimates in scheduling the ibm sp2 with

backfilling,” IEEE Transactions on Parallel and Distributed Computing,

vol. 12, pp. 529-543, 2001.

M. Koibuchi, K. Anjo, Y. Yamada, A. Jouraku, and H. Amano, “A simple

data transfer technique using local address for networks-on-chips,” IEEE

Transaction on Parallel and Distributed Systems, vol. 17, no. 12, pp.

1425-1437, 2006.

“Parallel workloads

workload/.

https://github.com/KoibuchiLab/

[10]

(11]

[12]

[13]

archive,” http://www.cs.huji.ac.il/labs/parallel/

-138 -~

