
Hardware Design and Evaluation of
Cell Allocation Cache

Tomoaki IKARI
Department of Information Science and Technology,

Aichi Prefectural University
Aichi prefecture, Japan

is161095@cis.aichi-pu.ac.jp

Takahiro SASAKI
Department of Information Science and Technology,

Aichi Prefectural University
Aichi prefecture, Japan
sasaki@ist.aichi-pu.ac.jp

Abstract—Multi-core processors are widely used to improve
performance of computer systems. To achieve both high per-
formance and low power consumption, many researches from
device level to processor architecture or application software
level have been done. This paper focuses to cache system which
is one of the significant module consuming large power. To
achieve both high performance and low power consumption, Cell
Allocation Cache is proposed which is similar to dynamic cache
partitioning technique, but it allocates cache spaces called “Cell”
which is smaller than a way. Cell Allocation Cache can achieve
better performance than normal cache and cache partitioning.
The previous research evaluates the performance of the Cell
Allocation Cache. However, circuit scale has not been clarified
because detailed design is not performed. This paper evaluates
circuit scale of Cell Allocation Cache and shows the hardware
overhead.

Index Terms—Cache partitioning, shared cache, cell allocation
cache, high performance and low power, VLSI design.

I. INTRODUCTION

In recent years, the processors used in from smart phone
to high-end computer need high performance and low energy
consumption. There are many studies to achieve both high per-
formance and low energy consumption. Multi-core processor
is one of the ways to achieve high performance. However,
in multi-core processor architecture, memory accesses are
increased and each processor uses same entries frequently
which cause frequent data confliction than that of single-
core processor. Then the problem which cache miss rates
increase occurs. Memory access is one of the bottle necks
of the processor performance and it is important for high
performance to decrease memory accesses or decrease cache
miss rates. In order to solve the problem, we propose Cell
Allocation Cache [1] which allocates smaller cache spaces
called “Cell”. The Cell is smaller than a way and dynamically
assigns to the processor core. However, Cell Allocation Cache
required parameters to optimize cache performance. Reference
[2] shows automatic parameter tuning technique and perfor-
mance for Cell Allocation Cache. However, circuit scale has
not been clarified because detailed design is not performed.
This paper evaluates circuit scale of Cell Allocation Cache
and shows the hardware overhead.

II. CELL ALLOCATION CACHE

A. Abstract of Cell Allocation Cache

Cell Allocation Cache is based on the way applied cache
partitioning [3] for multi-core processor, but it can control
cache with more smaller units. In general, each core com-
petes for shared cache memory which causes performance
degradation. Cache partitioning can reduce conflicts by par-
titioning ways and assign them to each core dynamically.
However, there are temporal and spatial localities in the
program, accessed memory area is nonuniform. To explain
this problem simply, we assume four cores system. If single
light-weight process and three multi-threaded heavy process
runs simultaneously, normal cache is not aware of working
set. Therefore, single light-weight process is robbed cache
capacity by heavy process and it degrade performance. Cache
partitioning assign one or more ways to each cores, so light-
weight process can keep its own cache space. However, as well
known, memory access has locality of reference. Therefore,
some part of assigned cache space is not used well. Cache
partitioning cannot use cache memory effectively if the core
does not need much cache memory size. To solve the problem,
our Cell Allocation Cache assign smaller cache spaces called
‘Cell’, into that a way is subdivided. Accoding to [2], Cell
Allocation Cache can improvement 2.3 and 2.9 better percent
point compared to cache hit ratio of normal and cache parti-
tioning technique.

Fig. 1 shows the outline of Cell Allocation Cache. The Cell
is a group that holds some sequential cache lines, and the
“Block” is a group of Cells located in the same row. Cell is
assigned to one core dynamically. If a core running a program
whose working set is large, more Cells are assigned to the
core. However, in multi-thread program, each thread may share
data. To handle shared data effectively, we introduce two Cell
types called “Private Cell” and “Shared Cell”. Private Cell is
assigned to one specific core. On the other hand, Shared Cell
behaves as normal cache which can be replaced from any core.
From now, we explain the operations of line replacement. line
is a unit used to replace data between the cache and main
memory. If cache miss occurred, the cache read the data from
main memory or lower hierarchical cache. If both Shared Cell
and assigned Private Cell do not exist in the block, the replace

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 9, Number 1, pages 19–22, January 2020

– 19 –



Core0 Core1 Core2 Core3

Interconnection Network

Cell Cell Cell Cell Cell Cell Cell Cell

Way0 Way1 Way2 Way3 Way4 Way5 Way6 Way7

Block

Fig. 1. Cell Allocation Cache.

target is decided using LRU(Least Recently Used). If at least
one assigned Private Cell or Shared Cell exists, Cell Allocation
Cache decides a replace target from them. If there are some
candidates, the target line is decided using LRU from assigned
Private Cells and Shared Cells.

B. Management of Cell Types

Initially, cells are assigned to cores evenly. But, at every pre-
defined interval, Cell Allocation Cache re-assigns Private Cell
to other core, and/or changes types of Cells from Private to
Shared, and vice versa. Thus, the number of Private Cells for
the hit ratio lowest core is increased. SharedRatio is shown
in Eq(1), and is calculated for every Cells. Cell types are
managed based on SharedRatio.

SharedRatio =
Hit count of other core

Total hit count
(1)

To calculate SharedRatio for each Cell, we introduce three
counters shown in Fig. 2, “Access Counter” which counts
total access including cache miss, “Hit Counter” which counts
the number of hit and “Hit Other Counter” which counts the
number of access from not assigned core and causes cache hit,
into each Cells. This approach works well if target programs
are multiple single-thread programs or uniform multi-thread
program. However, to handle multi-thread program which
shared data and single-thread program simultaneously, mem-
ory access pattern is unbalanced. To handle shared data ef-
fectively, UpperThreshold and LowerThreshold parameters are
very important. Details of Cell Allocation Cache parameters
are shown in [2]. In the next section, we research the impact
of these counters on circuit scale to evaluate Cell Allocation
Cache.

III. IMPACT ON CIRCUIT SCALE

A. Additional elements

As described above, the Cell Allocation Cache has three
counters but there are other elements we need to implement.
Fig. 3 shows the data path of Cell Allocation Cache. Cell
Allocation Cache requires adders to increment each counter

Access counter

Hit Counter

Hit Other Counter

LINE
LINE
LINE
LINE

LINE

･
･
･

Fig. 2. Counters in each Cell.

Hit Other Counter

Hit Counter

Tag Set ID Line Word

Memory Address

V Tag ID Data

Cell

State

SRAM

=

Access Counter

SRAM

Counter Reset

Counter Reset

+

+

SRAM

L1 Access

+

Counter Reset

Fig. 3. Data path when cache hit occurs of Cell Allocation Cache.

and bit representing the state of the Cell. “Hit Counter” is
increment when cache hit and cache block matches the core
specified by the address. ID in Fig. 3 is for identifying the
core. “Hit Other Counter” counts all cache hits and “Access
Counter” counts all cache accesses. Because [2] evaluates
performance using a software simulator, hardware cost is not
considered. In this paper, to estimate hardware cost, we design
the cache control logic in detail. According to [2], the interval
of parameter tuning is 300,000cycles. So we use 19bit counters
for each three counter. Fig. 4 shows the mechanism to calculate
SharedRatio. When Access Counter value reaches interval
parameter, each counter is reset. Table I shows what is added
elements per Cell. In addition to the above, phase detection
circuit shown in Fig. 5 also impact circuit scale.

TABLE I
BITS ADDED PER CELL.

Parts Amounts
Access Counter 19bit × 1
Hit Counter 19bit × 1
Hit Other Counter 19bit × 1
Adder 3
AND Gate 2
XOR Gate 1
Comparator 2
Divider 1

As another concern, Cell Allocation Cache has possibility
of enlargement of circuit scale because it adds three counters
in each Cell. Therefore, we estimate how chip area increases
using CACTI [5]. According to our estimation results, com-
pared to general cache, the area increasing rate is less than
0.1% when Cell Allocation Cache is implemented on the same
condition described in [2]. Thus we can neglect increase of
chip area by adding the counters. Whereas, the divider tends

– 20 –



Hit Other Counter

Hit Counter

DIV SharedRatio

=

Access Counter

Interval

Counter Reset

Fig. 4. Mechanism to calculate SharedRatio.

PC

Hash
Func

D-FF

Signature
History Table

Signature Parameter LRU

Parameter
Explorer

Found similar signature

Predicted Threshold

1  0

00110011 0.75 1
00001111 0.32 2

･
･
･

･
･
･

Fig. 5. Adaptive Cell Allocation Cache.

to have a relatively large circuit scale, resulting in an area and
power bottleneck. Therefore, we try to implement the control
logic without dividers.

B. To reduce overhead

To calculate the SharedRatio, [2] uses a divider. Division
is complex calculation, but it can be easily calculated when
a divisor is a power of 2. In this case, the result is obtained
by shifting the dividend. This paper proposes two methods to
use a shift logic instead of a divider. Fig. 6 shows example
of simple shift operation. If the divisor is a power of 2, for
example, 8, the result is obtained by shifting 3 bits to the right.
The number to shift is given by Eq(2).

Shift amount = log2(Divisor) (2)

Now, we propose two methods on how to implement ap-
proximate divider with shift operation. Two method dividers
use the 45nm CMOS process to evaluate the area. As a first
method, we propose “approximation method” which approxi-
mates the divisor to a power of 2. This method can calculate
the SharedRatio at the exact interval. However, this method
increases calculation complexity and occurs calculation error
occurs in SharedRatio. The circuit scale of this divider is
equivalent to 933 NAND gates.

As a second one, we propose “pickup method” which
calculates SharedRatio only when the divisor is a power of 2.

The quotient 0110 1001

Divisor 0000 0010

Dividend 1101 0010

>>

Fig. 6. Example of shift operation.

The calculation complexity and the circuit scale of this method
are small. However, the timing to calculate the SharedRatio
is inaccurate. The cache controller waits to execute the pre-
defined numbers of load/store instructions. After meeting the
condition, the controller waits for the divisor to be a power
of 2 to calculate SharedRatio with shift operation. Therefore,
timing to calculate the SharedRatio depends on the divisor and
memory access frequency. The divider of this method has only
431 gates in terms of the number of equivalent NAND gates.

As shown in section III-A, the effect of counters on the
circuit scale is negligible. Similarly, we examine the area
increase rate of the circuit with the proposed the divider
added. Table II shows the circuit scale and area increase rate
of the two methods. The area increase rate was calculated
by comparing a normal cache with a Cell Allocation Cache
equipped with a counter and an approximate divider. In this
survey, the Cell Allocation Cache is assumed to be 8MB,
8way, 128 Cells. As a result, the circuit overhead implemented
in the Cell Allocation Cache was negligible. This result can
be attributed to the fact that most of the circuit area of the
cache is memory cells. However, since peripheral circuits are
driven more frequently than memory cells, it is meaningful to
reduce the circuit scale. Survey the impact on the performance
of the two methods is a challenge for the future.

TABLE II
THE CIRCUIT SCALE OF THE PROPOSED APPROXIMATE DIVIDERS.

Method Gates∗1 Increase rate
approximation 933 1.000132
pickup 431 1.000109

*1 in term of the number of equivalent NAND gates.

IV. CONCLUSION AND FUTURE WORKS

In this paper, we estimate circuit scale of Cell Allocation
Cache and we showed units required to implement the circuit.
It was found that impact of three counters and approximate
divider on circuit scale is slight. Therefore, Cell Allocation
Cache overhead is phase detection circuit to calculate Share-
dRatio.

The following are the future research plans:
• evaluate area / performance tradeoffs with various com-

binations of parameters,
• design of Cell Allocation Cache by SystemVerilog, and
• layout design with place and route tools.
We also plan to implement our Cell Allocation Cache

into FabHetero [4] heterogeneous multi-core processors design
automation project.

– 21 –



V. ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant
Number 15K00074, and VLSI Design and Education Cen-
ter(VDEC), the University of Tokyo in collaboration with Syn-
opsys, Inc. Cadence Design Systems, Inc., Rohm Corporation
and Toppan Printing Corporation.

REFERENCES

[1] M. Tone, et al., “Improvement of Cache Performance by Dynamic Con-
trol of Partition Allocation,” Proceedings of the International Symposium
for Sustainability by Engineering at Mie University, pp.13–14, 2016.

[2] T. Sasaki, et al., “Adaptive Cell Allocation Cache using Phase Detection
Technique,” Proc. of the International Technical Conference on Cir-
cuits/Systems, Computers and Communications (ITC-CSCC), pp. 1–4,
2019.

[3] G. E. Sue, L. Rudolph, and S. Devadas, “Dynamic Partitioning of Shared
Cache Memory,” Journal of Supercomputing, vol.28, no.1, pp.7–26,
2004.

[4] T. Okamoto, T. Nakabayashi, T. Sasaki, and T. Kondo, “Fabcache:
Cachedesign automation for heterogeneous multi-core processors,” in
2013 FirstInternational Symposium on Computing and Networking.
IEEE, pp.602-606, 2013.

[5] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
NUCA Organizations and Wiring Alternatives for Large Caches with
CACTI 6.0,” Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture, pp.3–14, 2007.

– 22 –


