
Measurement of Performance and Energy
Consumption of OpenCV Programs on Raspberry Pi

Kazumasa Kadota1, Ittetsu Taniguchi2, Hiroyuki Tomiyama1
1 Graduate School of Science and Engineering, Ritsumeikan University, Japan

2 Graduate School of Information Science and Technology, Osaka University, Japan

Abstract—Raspberry Pi is widely used tiny computer not only
for educational purposes but also for IoT devices. Since IoT
devices are required to operate with low power/energy
consumption, efficient energy management is necessary. In this
paper, we measure the performance and energy consumption of
Open CV programs on Raspberry Pi. The OpenCV programs are
executed under the different execution methods and various
execution frequencies, and the characteristics of performance and
energy consumption are analyzed.

Keywords—Raspberry Pi, OpenCV, energy consumption

I. INTRODUCTION
Nowadays, computer vision is popular application on IoT

devices. Computer vision often requires high computational
power, but low energy consumption is also important for IoT
devices because of its limited power supply due to the battery
capacity.

Raspberry Pi is well known and widely used tiny computers.
Raspberry Pi is used not only for educational purpose but also
for recent IoT devices. In order to realize long operational time
for the dedicated application such as computer vision, efficient
power/energy management is important for Raspberry Pi based
IoT devices. Then the measurement of performance and energy
consumption is an important first step to realize such energy
management technology.

Various researches have been reported regarding the
measurement and analysis of power/energy consumption of
Raspberry Pi [1, 2, 3, 4]. Reference [1] measured the power
consumption of Raspberry Pi, and the results are compared with
PC and smart phones. Reference [2] focused on the sensor
network such that Raspberry Pi is used as sensor node. The
power consumption of Raspberry Pi based sensor node was
measured and analyzed. Reference [3] also focused on wireless
sensor network such that Raspberry Pi is used as the gateway.
The power consumption of Raspberry Pi based gateway was
measured and analyzed under the various execution frequencies.
Reference [4] constructed the power consumption model based
on the regression analysis with real measured power
consumption data.

In this paper, we measure the performance and energy
consumption of computer vision applications on Raspberry Pi.
We employ the following three benchmark applications which
use OpenCV: circle detection, Kmeans, and face detection.
OpenCV supports parallel processing on multi-core CPUs and it
can be customized when building OpenCV. In this paper, we
measure the performance and energy consumption of three types

of configurations: parallel execution using OpenMP, parallel
execution using pthreads, and single-thread execution. In
addition, CPU execution frequency of Raspberry Pi is also
changed from 400MHz to 1.2GHz to measure.

The rest of the paper is organized as follows: Section 2
explains the experimental environment. Section 3 and 4 show
the measurement results of execution time and energy
consumption of single and multiple programs, respectively. The
discussion is given in Section 5 and this paper is summarized in
Section 6.

II. EXPERIMENTAL ENVIRONMENT

A. Equipment and Software
In this paper, Raspberry Pi 3 Model B was used to measure

the performance and energy consumption. Raspberry Pi 3 Model
B has ARM Cortex-A53 (4 cores) and 1GB SDRAM operating
at up to 1.2GHz. We used KKmoon voltage / current tester
UM24C to measure energy consumption.

OpenCV 3.4 was built as following configurations using
GCC 7.4.

n OpenMP

n pthread

n Single-thread

The following OpenCV sample programs were executed on
Raspberry Pi with Ubuntu 18.04 OS.

n Circle detection by Hough transform

n Clustering by Kmeans method

n Face detection by classifier cascade using Haar-like
features

CPU clock frequency was fixed by setting Governor to
Performance. We measured the performance and energy
consumption under the following frequencies: 400MHz,
800MHz, and 1.2GHz.

B. Profiling
As a preliminary experiment, three programs were profiled.

Three programs were executed on the Raspberry Pi using the
OpenCV library built with three configurations: OpenMP,
pthread, Single-thread. CPU clock frequency was fixed at 1.2
GHz. We obtain the CPU performance counter values by perf
command.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 9, Number 1, pages 35–39, January 2020

– 35 –

Table 1 shows the profiling results. Because Raspberry Pi
3B has 4 CPU cores, CPU time in Table 1 and the actual elapsed
time were largely different. In a rough approximation, the
elapsed time can be obtained by dividing the CPU time by 4, the
number of CPU cores. Table 1 also shows that the number of
page faults of the face detection program is much higher than
the others. This means that the working set of the face detection
is larger than the others.

III. RESULTS OF EXECUTION TIME AND ENERGY
CONSUMPTION OF SINGLE PROGRAM

In this experiment, three OpenCV programs were executed
on Raspberry Pi with different execution frequencies. Figure 1
shows the execution time and energy consumption of circle

detection program. Figure 1 shows that both minimum
execution time and minimum energy consumption are obtained
at 1.2GHz and OpenMP. The execution time of pthread is
shorter than Single-thread, but the impact is relatively small in
terms of the number of cores. Energy consumption of pthread
is slightly larger than Single-thread. In this experimental
environment, power management cannot be applied for each
core, and the power consumption of idle cores are also
considerable. This is why the energy consumption of Single-
thread is not so small.

Figure 2 shows the execution time and energy consumption
of Kmeans program. The minimum execution time is obtained

Table 1. Profiling Results by perf Command
 Circle detection Kmeans Face detection

 OpenMP pthread Single OpenMP pthread Single OpenMP pthread Single

CPU Time [s] 261.3 414.2 182.8 60.3 71.8 15.9 175.6 140.2 199.9

#Execution Cycles [M] 305,493 438,507 217,119 72,345 80,104 19,007 206,476 152,051 235,254

#Executed Instructions [M] 104,567 159,691 99,285 49,065 54,771 13,475 116,385 86,133 141,737

IPC 0.34 0.36 0.46 0.68 0.68 0.71 0.56 0.57 0.60

Branches 12,887 19,553 11,967 5,772 5,475 1,352 6,359 4,622 7,556

Branches-Misses 0.44 0.30 0.40 0.78 2.53 2.54 1.76 1.26 1.24

Page-Fault 27,526 26,813 15,206 35,755 111,566 28,578 851,240 504,667 508,497

Context-Switches 2,036 2,684 15,177 754 1,286 1,376 66,703 12,102 18,502

CPU-Migrations 10 95 27 8 94 4 17,441 1,726 176

(a) Execution Time

(b) Energy Consumption
Figure 1. Circle Detection Program

1
4

9

8
3

.5

6
9

.6

2
6

1

1
4

3

1
1

3

4
9

4

2
5

6

1
8

0

0

200

400

600

400MHz 800MHz 1.2GHz

Ex
ec

ut
io

n
Ti

m
e[

S]

CPU Clock Frequency

OpenMP pthread Single

10
8

81 76

16
8

12
2 13

8

29
8

17
6

13
4

0

150

300

450

400MHz 800MHz 1.2GHz

En
er

gy
 C

on
su

m
pt

io
n[

m
W

h]

CPU Clock Frequency

(a) Execution Time

(b) Energy Consumption

Figure 2. Kmeans Program

51
.2

25
.8 33

.9

81
.1

40
.5

28
.1

46
.6

23
.3

15
.8

0

25

50

75

100

400MHz 800MHz 1.2GHz

Ex
ec

ut
io

n
Ti

m
e[

s]

CPU Clock Frequency

OpenMP pthread Single

36

26

22

51

31

2627

16

19

0

10

20

30

40

50

60

400MHz 800MHz 1.2GHz

En
er

gy
 C

on
su

m
pt

io
n[

m
W

h]

CPU Clock Frequency

– 36 –

at 1.2 GHz and Single-thread. On the other hand, the minimum
energy consumption is obtained at 800 MHz and Single-thread.
Because the given data set is relatively small, it seems that the
large benefit of parallelization by OpenMP or pthread cannot be
obtained. When we focus on Single-thread execution at Figure
2 (b), the energy consumption of Single-thread at 800MHz is
smaller than the 1.2GHz. Because lower execution frequency
usually causes lower internal power supply voltage, it seems that
the power and energy consumption became small.

Figure 3 shows the execution time and energy consumption
of the face detection program. Figure 3 shows that both
minimum execution time and minimum energy consumption are
obtained at 1.2GHz and pthread.

IV. RESULTS OF EXECUTION TIME AND ENERGY
CONSUMPTION OF MULTIPLE PROGRAMS

In Section 3, we measured the performance and energy
consumption of each single OpenCV program. In this section,
we measure the performance and energy consumption of
multiple execution. In this experiment, following executions
are performed.
n The same program is executed sequentially such as:

$ program; program; program

n The multiple identical programs are executed at the
same time such as:

$ program1 & program2 & program3

A. Execution of Two Programs
Figure 4 shows the execution time and energy consumption

when two circle detection programs are executed. Figure 4

(a) Execution Time

(b) Energy Consumption

Figure 4. Two Circle Programs

29
7

22
7

13
3

52
1

28
7

22
5

98
7

51
1

36
0

31
2

17
2

13
7

45
9

23
2

20
0

50
4

26
9

20
1

0

200

400

600

800

1000

1200

400MHz 800MHz 1.2GHz

Ex
ec

ut
io

n
Ti

m
e[

s]

CPU Clock Frequency

OpenMP ; pthread ; Single ; OpenMP & pthread & Single &

2
2

2

1
6

0

1
4

7

3
3

5

2
4

3

2
2

6

5
7

3

3
3

7

2
6

1

2
2

7

1
6

7

1
5

6

3
0

8

2
4

0

2
1

6

3
2

2

2
0

4

1
7

2

0

100

200

300

400

500

600

700

400MHz 800MHz 1.2GHz

En
er

gy
 C

on
su

m
pt

io
n[

m
W

h]

CPU Clock Frequency

(a) Execution Time

(b) Energy Consumption

Figure 3. Face Detection Program

1
9

1

1
0

0

8
3

.5

554

283

1
9

5

2
9

3

1
6

2

1
2

1

0

200

400

600

400MHz 800MHz 1.2GHz

Ex
ec

ut
io

n
Ti

m
e[

s]

CPU Clock Frequency

OpenMP pthread Single

1
9

5

1
2

6

1
1

1

1
2

8

8
9

8
2

3
2

1

1
9

3

1
4

2

0

150

300

450

400MHz 800MHz 1.2GHz

En
er

gy
 C

on
su

m
pt

io
n[

m
W

h]

CPU Clock Frequency

(a) Execution Time

(b) Energy Consumption

Figure 5. Two Kmeans Programs

10
2

51
.8

53
.7

16
1

82
.9

56
.4

93
.1

47
.5

31
.6

89
.7

45
.4

41
.0

12
1

94
.3

44
.1

47
.1

24
.0

16
.3

0

60

120

180

400MHz 800MHz 1.2GHz

Ex
ec

ut
io

n
Ti

m
e[

s]

CPU Clock Frequency

OpenMP ; pthread ; Single ; OpenMP & pthread & Single &
72

48

42

10
1

72

51

57

32

23

64

46

39

92

73

47

31

18 15

0

30

60

90

120

400MHz 800MHz 1.2GHz

En
er

gy
 C

on
su

m
pt

io
n[

m
W

h]

CPU Clock Frequency

– 37 –

shows that both minimum execution time and minimum energy
consumption are obtained at 1.2GHz and OpenMP. This result
is the same as the single execution of the same program (circle
detection program) as shown in Figure 1. When comparing
sequential execution and concurrent execution, sequential
execution was slightly better.

Figure 5 shows the execution time and energy consumption
when two Kmeans programs are executed. Figure 5 shows that
both minimum execution time and minimum energy
consumption are obtained at 1.2GHz and Single-thread. This
result is the same as the single execution of the same program
(Kmeans program) as shown in Figure 2. In the case of Single-
thread execution, it is better to execute two programs
simultaneously than to execute them sequentially. By executing
two programs at the same time, the multiple cores are effectively
utilized, and the better results are obtained in the end.

Figure 6 shows the results when two face detection programs
are executed. Figure 6 shows that both minimum execution time
and minimum energy consumption are obtained at 1.2GHz and
pthread.

B. Execution of Four Programs
Figure 7 shows the execution time and energy consumption

when four circle detection programs are executed. In case of two
circle detection shown in Figure 4, 1.2GHz and OpenMP were
the best for both execution time and energy consumption.
However, in case of four circle detection shown in Figure 7,
1.2GHz and Single-thread were the best. Since Raspberry Pi that
we used in the experiment has four cores, it seems that four
Single-thread programs are executed on four cores in parallel.

(a) Execution Time

(b) Energy Consumption

Figure 8. Four Kmeans Programs

20
7

10
4

74
.1

32
7

16
5

11
718

6

93
.4

63
.317

1

85
.8

58
.3

58
6

40
1

38
9

48
.8

25
.3

18
.9

0

200

400

600

800

400MHz 800MHz 1.2GHz

Ex
ec

ut
io

n
Ti

m
e[

s]

CPU Clock Frequency

OpenMP ; pthread ; Single ; OpenMP & pthread & Single &

1
4

3

1
0

0

8
3

1
9

2

1
2

7

1
0

3

1
1

6

6
2

4
6

1
2

2

8
9

7
7

3
1

0

2
8

0

2
6

9

3
7

2
4

2
3

0

100

200

300

400

400MHz 800MHz 1.2GHz

En
er

gy
 C

on
su

m
pt

io
n[

m
W

h]

CPU Clock Frequency

(a) Execution Time

 (b) Energy Consumption

Figure 7. Four Circle Detection Programs

59
3

33
4

27
1

10
41

57
7

46
4

19
75

10
23

72
0

59
3

35
1

28
9

91
0

49
5

39
855

9

33
0

26
3

0

500

1000

1500

2000

2500

400MHz 800MHz 1.2GHz

Ex
ec

ut
io

n
Ti

m
e[

s]

CPU Clock Frequency

OpenMP ; pthread ; Single ; OpenMP & pthread & Single &

42
7

34
8

30
2

71
6

49
1

48
0

11
30

68
0

52
6

42
4

33
8

32
1

60
4

45
6

42
8

40
9

30
9

28
8

0

200

400

600

800

1000

1200

400MHz 800MHz 1.2GHz

En
er

gy
 C

on
su

m
pt

io
n[

m
W

h]

CPU Clock Frequency

(a) Execution Time

(b) Energy Consumption

Figure 6. Two Face Detection Programs

13
82

53
5

40
4

38
2

18
7

13
2

11
05

56
8

39
1

17
18

82
3

72
082

0

56
5

54
0

56
3

29
5

22
3

0

500

1000

1500

2000

400MHz 800MHz 1.2GHz

Ex
ec

ut
io

n
Ti

m
e[

s]

CPU Clock Frequency

OpenMP ; pthread ; Single ; OpenMP & pthread & Single &

89
8

39
7

33
1

25
4

17
3

14
7

67
2

37
8

29
0

10
07

55
5

49
8

52
1

36
3

34
3

35
9

24
1

21
5

0

300

600

900

1200

400MHz 800MHz 1.2GHz

En
er

gy
 C

on
su

m
pt

io
n[

m
W

h]

CPU Clock Frequency

– 38 –

Figure 8 shows the execution time and energy consumption
when four Kmeans programs are executed. As shown in Figure
8, 1.2GHz and Single-thread were the best for both execution
time and energy consumption. Notice that both execution time
and energy consumption became worse when four pthread
programs were executed.

Figure 9 shows the results when four face detection
programs are executed. As shown in Figure 9, 1.2GHz and
pthread were the best for both execution time and energy
consumption. This is the same results as two face detection
programs are executed in Figure 6. On the other hand, the
execution time became worse when four OpenMP programs
were executed. As mentioned in Section 2.2, the face detection
program needs large memory size. Thus, parallel execution of
four such programs, which especially execute in data parallel
using OpenMP consumes much more memory size. Therefore,
the page faults occur frequently.

V. DISCUSSIONS
OpenCV supports multiple libraries such as OpenMP,

pthread, and CUDA. These can be selected when we build the
OpenCV. In this experiment, GPU was not used, and multicore
parallel execution by OpenMP, multicore parallel execution by
pthread, and single thread execution were evaluated. As the
results, the parallel libraries with the shortest execution time are
different depending on the OpenCV program to be executed or
the input data of the program. The suitable parallel libraries are
also different depending on the number of and characteristics of
the programs executed simultaneously. Furthermore, when
executing multiple OpenCV programs, it is not always better to
execute them in parallel, and some cases are better to execute
them sequentially.

From these results, when we compile the OpenCV
application program, it is better to link appropriate OpenCV
libraries, which are built with the different parallel libraries.
Furthermore, it is better to prepare the appropriate binaries by
compiling the application program with the different OpenCV
libraries because the characteristics of the execution time and
energy consumption are different under the different clock
frequency. This means that we have an opportunity to switch the
binaries to minimize execution time and energy consumption
under the frequency scaling environment.

From the experimental results, the execution time and
energy consumption followed the same characteristics for many
cases. This means that the minimization of execution time also
brings the reduction of energy consumption. Regarding the
operating frequency, in most cases, operating at the highest
operating frequency (1.2 GHz in this case) was the best in terms
of both execution time and energy consumption.

VI. SUMMERY
This paper evaluated the performance and energy

consumption of OpenCV programs on Raspberry Pi. We used
the following three benchmark applications: circle detection,
Kmeans, and face detection. In this paper, we measured the
execution time and energy consumption of three types of
configurations: parallel execution using OpenMP, parallel
execution using pthreads, and single-thread execution. In
addition, CPU execution frequency of Raspberry Pi was also
changed from 400MHz to 1.2GHz to measure. Experimental
results show the best configuration and CPU execution
frequency were different to minimize the execution time and
energy consumption for each application. These results show the
minimization of execution time and energy consumption are
achieved by switching the OpenCV library appropriately. Future
work includes further experiment and analysis of execution time
and energy consumption for OpenCV functions.

Acknowledgment

This research has been partly supported by KIOXIA
Corporation (former Toshiba Memory Corporation).

References
[1] G. Bekarro, A. Santokhee, “Power Consumption of the RaspberryPi: A

Comparative Analysis,” International Conference on Emerging
Technologies and Innovative Business Practices for the Transformation
of Societies, 2016.

[2] C. Cabaccan, F. Reidj, G. Cruz, “Power Characterization of Raspberry
Pi Agricultural Sensor Nodes Using Arduino Based Voltmeter,”
International Conference on Computer and Communication Systems,
2018.

[3] F. Astudillo-Salinas, D. Barrera-Salamea, “Minimizing the Power
Consumption in Raspberry Pi to Use as a Remote WSN Gateway,” Latin-
American Conference on Communications, 2016.

[4] F. Kaup, P. Gottschling, D. Hausheer, “PowerPi: Measuring and
Modeling the Power Consumption of the Raspberry Pi,” Conference on
Local Computer Networks, 2014.

(a) Execution Time

(b) Energy Consumption

Figure 9. Four Face Detection Programs

39
47

13
39

87
6

76
7

39
6

26
622

14

11
35

78
7

16
16

5

89
27

58
80

29
58

17
85

15
52

11
77

70
6

48
5

0

4500

9000

13500

18000

400MHz 800MHz 1.2GHz

Ex
ec

ut
io

n
Ti

m
e[

s]

CPU Clock Frequency

OpenMP ; pthread ; Single ; OpenMP & pthread & Single &

22
66

95
6

68
1

51
0

34
3

25
712

86

76
0

57
6

88
30

62
13

43
72

17
19

11
82

98
6

82
2

57
8

43
3

0

2500

5000

7500

10000

400MHz 800MHz 1.2GHz

En
er

gy
 C

on
su

m
pt

io
n[

m
W

h]

CPU Clock Frequency

– 39 –

