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Abstract—Recently, machine learning algorithms using 
quantum computers have been actively developed. Among them, 
the support vector machine (SVM) specialized for the 
classification problem is one of the algorithms that are 
attracting the most attention for improving the performance by 
the quantum computer. In this study, we propose an SVM that 
classifies test data according to energy level by using time 
evolution calculation of Ising model. Furthermore, we propose 
a method to determine the support vector by applying the 
concept of DBSCAN and Deutsch-Jozsa algorithm and 
examining the mixture of surrounding data classes. We show 
that our algorithm can be classified regardless of the difference 
in the dimensions of the teacher data, and also the difference 
between linear and nonlinear data. 

Keywords—Deutsch-Jozsa algorithm, machine learning, 
support vector machine, quantum algorithms 

I. INTRODUCTION 
In recent years, algorithms that use quantum computers 

have been developed one after another in anticipation of 
higher efficiency than computations in existing computers. 
Some quantum algorithms are known to be able to calculate 
faster than existing computers [1-3], and their applications are 
progressing in various fields such as optimization calculations, 
financial fields, quantum chemical calculations, and machine 
learning [4-7]. Among them, quantum machine learning has 
attracted attention as an application field of quantum 
algorithms due to the proposal of algorithms that can perform 
matrix calculations with quantum computers. It is the Harrow-
Hassidim-Lloyd (HHL) algorithm [8], which can solve linear 
equations using the quantum phase estimation algorithm [9]. 
However, this algorithm has a deep quantum circuit and is 
difficult to calculate accurately with the current quantum 
computer hardware with a lot of noise [10]. Therefore, a 
hybrid algorithm that shortens the quantum circuit to be 
constructed and also uses a classical computer has been 
proposed, and a quantum variational algorithm (VQE) [11] 
and a quantum approximation optimization algorithm 
(QAOA) [12] have been developed. 

Currently, various quantum machine learning algorithms 
have been proposed, such as unsupervised quantum 
Boltzmann machines [13], supervised quantum autoencoders 
[14], reinforcement learning using quantum Boltzmann 
machines [15] and quantum circuit learning [16], in which 
learning is performed with a quantum circuit with a short 
depth, has been proposed. Among them, the quantum support 
vector machine (QSVM) [17] is one of the most famous 
quantum machine learning algorithms. SVM [18] is a basic 

supervised learning that specializes in classification problems, 
and several SVM algorithms that use quantum computers have 
been considered. One of them is QSVM [17], which treats 
SVM as an approximate least squares problem by adding a 
hinge loss function term to the loss function and efficiently 
calculates the kernel matrix. The other is QSVM [19] that 
calculates the inner product of input vectors using a quantum 
circuit called the Hadamard test using phase kickback. 
Furthermore, QSVM [20] has been proposed in which input 
data is projected onto a unit circle, and then classification is 
performed by inputting the data to the amplitude of the qubit 
and observing it. Recently, QSVM [21] has been proposed in 
which the feature space is expanded to a high-dimensional 
Hilbert space and classification is performed using a quantum 
circuit learning algorithm. 

In this study, we propose a method of applying the time 
evolution [4] of the Ising model calculated on the quantum 
gated quantum computer to SVM, which is one of the basic 
algorithms of machine learning. Time evolution simulation of 
the Ising model is one of the quantum algorithms applied to 
the optimization calculation, and is also called quantum 
annealing. We also propose a method for determining support 
vectors by ranking data points based on the number of data 
points of different classes around them. It applies the concepts 
of DBSCAN [22], one of machine learning clustering 
algorithms, and Deutsch-Jozsa algorithm [1], a quantum 
algorithm. 

II. QUANTUM SUPPORT VECTOR MACHINE BASED ON 
DEUTSCH-JOZSA RANKING 

A. SVM using quantum adiabatic calculation 
SVM [18] is a basic supervised learning algorithm 

specializing in classification problems. Fig. 1 is a schematic 
diagram of SVM in the linear binary classification problem. 
From the definition of SVM, classification is performed by 
maximizing the distance d between the hyperplane 𝐻"  and 
𝐻#"  in the schematic diagram of Fig. 1. 𝐻"  and 𝐻#"  are 
𝑓(𝑥) = 𝑤𝑥 + 𝑏 = ±1 lines, and the data points on the lines 
are called support vectors. In Fig. 1, four support vectors are 
displayed. For the point (𝑥., 𝑦.) in 𝐻., the distance of the line 
𝐴𝑥 + 𝐵𝑦 + 𝑐 = 0 can be written as follows. 

 

𝑑 = 2
|𝐴𝑥. + 𝐵𝑦. + 𝑐|

√𝐴9 + 𝐵9
(1) 
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Here, 𝐴 = 𝑤,𝐵 = 0,𝑐 = 𝑏. The distance 𝑑 can be expressed 
more simply by using the condition 𝑤𝑥. + 𝑏 = ±1 in 𝐻"and 
𝐻#". 

𝑑 = 2
|𝐴𝑥. + 𝐵𝑦. + 𝑐|

√𝐴9 + 𝐵9
= 2

|𝑤𝑥. + 𝑏|
|𝑤| =

2
|𝑤|

(2) 

In SVM problems, the problem of maximizing d is 
equivalent to the problem of minimizing "

9
|𝑤|9 . Therefore, 

calculating the Lagrangian of "
9
|𝑤|9  can be expressed as 

follows. 

min𝐿(𝒘, 𝑏, 𝜶) =
1
2
|𝒘|9 −A𝛼C𝑦C(𝑥C ∙ 𝒘 + 𝑏)

E

CF"

+A𝛼C

E

CF"

(3) 

𝛼C ≥ 0 is a Lagrange multiplier. Considering the constraints 
of IJ

IK
= 0 and IJ

I𝒘
= 0, the following equation is established. 

A𝛼C𝑦C

E

CF"

= 0 (4) 

𝒘 =A𝛼C𝑦C𝑥C

E

CF"

(5) 

Assigning Eq. (4) and Eq. (5) to Eq. (3) gives the following 
equation, which can be transformed into a dual problem. 

max𝐿(	𝜶) =A𝛼C

E

CF"

−
1
2A𝛼C𝛼Q𝑦C𝑦QR𝒙C ∙ 𝒙QT

E

CF"

(6) 

Eq. (6) satisfies 𝛼C ≥ 0 and Eq. (4). Here, 𝒙C ∙ 𝒙Q  represents 
the inner product of two vectors and can be considered as 
interaction energy. By developing the kernel matrix 𝐾CQ =
	𝐾(𝑥, 𝑥Q), it is possible to deal with nonlinear problems. 

On the other hand, in this study, we consider all data as 
physical particles, and express the relationship between the 
data using the Ising model Hamiltonian based on the 
correlation matrix and distance matrix. A term representing a 
correlation between data in the Hamiltonian and a bias term 
applied to each data can be expressed as follows. 

𝐻 =A𝐽CQ𝑠C𝑠Q
CYQ

+Aℎ[\𝑠C
C

(7) 

The quantum computer can simulate the time evolution of the 
Hamiltonian and can determine the ground state energy. By 
reversing the sign of Eq. (7), we considered that it is 

equivalent to Eq. (6), and we proposed an SVM that solves the 
classification problem by calculating the Hamiltonian basis 
energy of the Ising model on a quantum computer. 

The coupling coefficient 𝐽CQ in Eq. (7) corresponds to the 
kernel matrix 𝐾CQ = 	𝐾(𝑥, 𝑥Q) in Eq. (6), and correlation (𝐽CQ =
cos	(𝜃CQ)), distance (𝐽CQ = b𝑿C − 𝑿Qb), Gaussian kernel (𝐽CQ =
exp	(−𝜎b𝑿C − 𝑿Qb

9)), reciprocal of distance (𝐽CQ = 1/b𝑿C −
𝑿Qb

h
), etc. can be applied. These differences are shown in Fig. 

2. The longitudinal magnetic field coefficient ℎ[\ of the Ising 
model corresponds to the class label data in the data 𝑿C. 

The proposed quantum SVM has no learning mechanism 
and uses teacher data every time it performs calculations to 
predict the class of test data. Specifically, the following flow 
is performed: 

1. Consider an Ising model based on multiple teacher data 
(support vectors) and one test data. 

2. As shown in Fig. 3, Execute time evolution by quantum 
adiabatic calculation [23], and when the class label of 
the test data is 1 or -1, it is determined which is in the 
stable state of the Hamiltonian. 

3. The value that results in a stable state is taken as the 
predicted value of the test data. 

The Ising model's longitudinal magnetic field coefficient 
ℎ[\ takes three values, ℎ[\ ∈ {−1, 0, 1}. In the case of teacher 
data, the corresponding class label ℎ[\ ∈ {−1, 1} and ℎ[\ = 0 
is substituted for test data. 

B. Quantum adiabatic calculation 
Quantum adiabatic calculation [23] is one of the annealing 

calculation methods calculated using the Ising model. The 
Ising model is a model that models the behavior of spin in a 
magnetic material such as a ferromagnet or antiferromagnet, 
and has two types of states: upspin (𝑠C = +1) and downspin 
(𝑠C = −1). 

The Hamiltonian of the entire system of the Ising model is 
expressed by the following equation using the coupling 
coefficient 𝐽CQ  between the two spins 𝑠C  and 𝑠Q  and the local 

Fig. 1. Diagram of SVM in the linear binary classification problem. 

Fig. 2. Type of data to be input as coupling coefficient 𝐽CQ. 
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longitudinal magnetic field ℎ[\ applied to the inside of the spin 
𝑠C. 

𝐻 =A𝐽CQ𝑠C𝑠Q
CYQ

+Aℎ[\𝑠C
C

(8) 

In the quantum adiabatic calculation, a transverse 
magnetic field ℎm  is added to set the initial state of the 
Hamiltonian. Also, since the spin 𝑠C corresponds to the Pauli 
operator 𝜎C[ , it can be expressed by the phase inversion 
operation gate Z of the quantum gate represented by the same 
matrix. Further, a parameter 𝑠(= 𝑡/𝑡o)  in which time 𝑡  is 
normalized by 𝑡o is introduced, and 0 ≤ 𝑠 ≤ 1. Therefore, the 
Hamiltonian in quantum adiabatic computation is as follows. 

𝐻(𝑠) = 𝑠 qA𝐽CQ𝑍C𝑍Q
CYQ

+Aℎ[\𝑍C
C

s + (1 − 𝑠)Aℎm𝑋C
C

(9) 

In a quantum computer, the time evolution of the 
Schrödinger equation can be expressed by performing unitary 
transformations in order. Assuming that the state vector of the 
qubit is |𝜓⟩, the Schrodinger equation can be expressed as 
follows. 

𝑖ℏ
𝜕
𝜕𝑡
|𝜓⟩ = 𝐻|𝜓⟩ (10) 

Solving the Schrödinger equation when the state vector 
depends on time and the Hamiltonian does not depend on 
time can be transformed as follows, and the unitary 
transformation 𝑈(𝑡) is derived. 

|𝜓(𝑡)⟩ = 𝑒#C
}
ℏ~|𝜓(0)⟩ (11) 

𝑈(𝑡) = 𝑒#C
}
ℏ~ (12) 

Therefore, by substituting Eq. (2) for 𝐻 in Eq. (5) and 
repeatedly performing unitary transformation 𝑈(𝑡) , the 
minimum value of the Hamiltonian can be obtained and an 
optimum spin state can be obtained. 𝑈(𝑡) in Eq. (12) is called 
a time evolution operator, and the detailed quantum circuit is 
shown in Fig. 4. In 𝐻 of Eq. (9), the term with the coupling 
coefficient corresponds to the combination of two CNOT 
gates and 𝑅[  gate of the quantum circuit, the longitudinal 

magnetic field term corresponds to the 𝑅[  gate, and the 
transverse magnetic field term corresponds to the 𝑅m  gate. 
Each coefficient, time evolution coefficient 𝑠, etc. are input 
as the input angle of the rotary gate. Thus, for example, when 
𝑠 evolves over 100 steps, the parts other than the two 𝐻 gates 
in Fig. 4 are repeated 100 times. 

C. Determine support vectors 

The support vector determination method is inspired by 
the idea of DBSCAN [22] and the Deutsch-Jozsa algorithm 
[1]. DBSCAN (Density-based spatial clustering of 
applications with noise) is one of clustering algorithms in 
machine learning. Each data point is classified into three 
types according to the number of other data points present in 
a circle with a radius 𝜀 centered on each data point, and a 
cluster is generated based on this classification. The Deutsch-
Jozsa algorithm is a quantum algorithm that is determined by 
a single measurement whether the output 𝑓(𝑥) ∈ {0, 1} of the 
binary function 𝑓(𝑥)  for a binary input 𝑥 ∈ {0, 1}�  of 𝑛 
qubits depends on the input 𝑥 (balanced) or not (constant). 
The quantum circuit of the Deutsch-Jozsa algorithm is shown 
in Fig. 6 (a). 

Applying these algorithm concepts, support vectors are 
determined from a lot of teacher data. Specifically, the 
following flow is performed. This flow is shown in Fig. 5: 

1. Examine the class label of the other teacher data point 
existing in the circle of radius ε centered on each teacher 
data point. 

2. Determine whether the teacher data in the circle 
including the central data point are all the same class 
(constant) or mixed with other classes (not constant). 

3. When the classes are mixed, we recognize all data points 
existing in the circle as data points close to the 
boundaries of a plurality of clusters. For convenience, 
we call this data point “RP” (representative point). 

4. Repeat steps 1 to 3 for all data points and rank the 
number certified as RP. 

Fig. 4. Diagram of QSVM classifying by Hamiltonian basis energy 
calculation. 

|0i H Rx Rz • • · · ·

|0i H Rz Rx Rz · · ·
Fig. 5. Part of the quantum circuit for quantum adiabatic computation in 
the case of two qubits. 

Fig. 3. (a)(b) Diagram of examining class labels of other teacher data 
points within a circle of radius ε centered on each teacher data point. (c) 
Schematic of the state where all teacher data points have been examined as 
the center of the circle. (d) Diagram of the top 1/3 ranking data determined 
as support vectors. 
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5. Decide the top 1/𝛼 data in the ranking as the support 
vector for all teacher data. 

The distance between each teacher data point can be 
considered as a coupling coefficient 𝐽CQ  in the Ising model. 
This time, the coupling coefficient 𝐽CQ is the reciprocal of the 
distance between each teacher data point. Presence / absence 
of other teacher data points in a circle of radius 𝜀  is 
determined by the following relational expression. 

𝐽CQ =
1

b𝑿C − 𝑿Qb
h < 𝜀 (13) 

𝜀 is a hyperparameter, and we can adjust the number of 
teacher data points contained in the circle. 

Next, Fig. 6(b) shows a quantum circuit that determines 
the class of each teacher data contained in the circle. We 
prepare a quantum bit corresponding to the number of each 
teacher data point included in the circle and one ancilla bit, 
and input a label value 𝑓(𝑥) ∈ {0, 1} of each teacher data 
class. From the quantum circuit in Fig. 6(b), the ancilla bit is 
inverted only when the class of teacher data in the circle is all 
0s or all 1s. Therefore, when the observed ancilla bit is 0, it 
is understood that the teacher data in the circle is a mixture of 
a plurality of classes, and the teacher data point in the circle 
is recognized as RP. The quantum circuit in Fig. 6(b) is a 
quantum circuit that uses the Multi-control NOT gate twice. 
Depending on the number of teacher data, the number of 
qubits used increases, making it difficult to implement the 
Multi-control NOT gate. It is necessary to search the 
optimum value of the number of data points included in the 
circle by adjusting the radius 𝜀 as a hyperparameter. 

Finally, we aggregate the number certified as RP for all 
teacher data, and determine the top 1/𝛼  data as support 
vectors. 𝛼 is a hyperparameter, and the number of support 
vectors varies greatly depending on the distribution of teacher 
data. Therefore, 𝛼  needs to be adjusted according to the 
distribution of teacher data. 

III. VERIFICATION OF THE PROPOSED METHOD 

A. Comparative verification of classification problems 
We demonstrate the classification of test data for the two 

types of teacher data (linear data and nonlinear data) using the 
proposed method. In addition, we compare with the proposed 
method using scikit-learn SVM. The four types of verification 
results are shown in the Fig. 7. We used 20 teacher data 
(square points) for each verification. In the case of linear data, 
there are 11 teacher data for +1 label (red points), 9 teacher 
data for -1 label (blue points). In the case of non-linear data, 
there are 14 teacher data for +1 label (red points), and 6 
teacher data of -1 label (blue points). Large square points in 
the teacher data are support vectors. The test data is indicated 
by round dots, and the number of test data is 17 for both linear 

data and nonlinear data. In the classification using DJ-QSVM, 
we set the radius of the scan circle to	𝜀 = 0.5 (linear data) and 

𝜀 = 0.6 (nonlinear data), the power of the reciprocal of the 
distance between data to 	𝛽 = 1 , and the criterion for 
determining the support vector from the ranking to 𝛼 = 3. In 
addition, we used scikit-learn.svm.SVC and classified all 
parameters with default values. From Fig. 7, we found that 
both linear classification and nonlinear classification by the 
proposed method can be classified like scikit-learn. However, 
if we change only the position without changing the number 
of teacher data, there are cases where it cannot be classified 
well. A possible cause is a small number of teacher data. As a 
result, if the number of teacher data is too small, the number 
of support vectors is insufficient and the classification 
accuracy may be reduced. Therefore, we think that we should 
classify using a lot of teacher data. However, with DJ-QSVM, 
quantum adiabatic calculations are performed using a number 
of qubits that combine all support vectors and one test data. 
For this reason, if the number of teacher data is too large, 
calculation cannot be performed correctly, or in the case of a 
simulator, calculation takes a long time. Therefore, in the 
future, it will be necessary to develop a method for calculating 
large-scale teacher data without increasing the number of 
qubits.  

B. Verification of parameter differences 
Next, we verified the effect on class label prediction by 

changing two parameters 𝜀  and 𝛽  in Eq. (7) in the 
classification of linear data using DJ-QSVM. The verification 
results are shown in Fig. 8. First, Fig. 8(d) shows the time 
evolution in quantum adiabatic computation, with 𝜀  varied 
into three types, 0.3, 0.5, and 0.7. Finally, the one with the 
higher probability of 1 label or -1 label is the predicted label. 
Other hyperparameters were set to 𝛽 = 1  and 𝛼 = 3 . The 
support vectors when 𝜀 is changed are as shown in Fig. 8(a), 
(b), and (c). The white circles in the Fig. 8 are the test data 
coordinates (𝑥, 𝑦) = (6, 4)  predicting the class. From Fig. 
8(d), it was found that the prediction results differed 
depending on ε. In addition, when the +1 label teacher data is 

Fig. 7. (a) The quantum circuit for Deutsch-Jozsa algorithm. (b) The 
quantum circuit that determines whether all other teacher data within the 
circle of radius ε centered each teacher data point are of the same class.  

Fig. 6. Result of classification of test data. Square points are teacher 
data, large square points are support vectors, and round points are test 
data. (a) Linear data classification by DJ-QSVM. (b) Linear data 
classification by scikit-learn. (c) Nonlinear data classification by DJ-
QSVM. (d) Nonlinear data classification by scikit-learn. 

– 66 –



𝜀 = 0.3 with respect to the test data, the prediction result is +1, 
and when the -1 label teacher data is close 𝜀 = 0.7 , the 
prediction result is -1. It was also found that the probabilities 
of +1 and -1 in the prediction results are almost equal when 
𝜀 = 0.5, which has test data at the same distance for the two 
classes of teacher data. 

Next, Fig. 8(e) shows the change in the prediction result 
when 𝛽 is changed to three types of 0.5, 1.0, and 5.0. 𝛼 = 3, 
and 𝜀 and test data were the same as in Fig. 8(c). From Fig. 
8(e), it was found that the larger 	𝛽  is, the smaller the 
difference from other data is, and the probability of +1 and -1 
in the prediction result was almost equal. From the above 
results, it was found that the prediction results also change 
when 𝜀  and 𝛽  are changed. These hyper parameters may 
change depending on the coordinates of test data, the number 
and types of teacher data, and the like. Therefore, in order to 
classify with high accuracy, it seems that you should avoid 
using the same hyperparameters in various classifications.  

IV. CONCLUSION 
In this study, we proposed an SVM that performs quantum 

adiabatic computation, which is a time evolution simulation 
algorithm of the Ising model, on a quantum computer and 
classifies test data using teacher data. In addition, we applied 
the concept of quantum algorithm Deutsch-Jozsa algorithm 
and proposed a method to determine support vectors by 
ranking data points by the number of data points of 
surrounding different classes. This proposed method is a 
method that can determine a support vector without 
performing complicated calculations, and can also handle 
high-dimensional teacher data. However, we did not get good 
results with complex teacher data, so we need to work on 
improving this algorithm in the future. 
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