

Quantum Circuit Learning Using Error
Backpropagation

Masaya Watabe

Engineering department,
The University of Electro-Communications

Tokyo, Japan

Koudai Shiba

Engineering department,
The Univdrsity of Electro-Communications

Tokyo, Japan

Tomah Sogabe *
i-PERC &

Engineering department,
The University of Electro-Communications

Tokyo, Japan;
Grid, Inc.

Tokyo, Japan
sogabe@uec.ac.jp

Katsuyoshi Sakamoto

 Engineering deptpartment,
 The University of Electro-Communications

Tokyo, Japan

Abstract— Quantum computing has the potential to
outperform classical computers, and is expected to play an active
role in various fields. On quantum machine learning, it is difficult
to learn only on quantum computing. Classical-quantum hybrid
algorithms are proposed in recent years. Classical computer is
used for calculation of parameter tuning in quantum circuit. In
this paper, we propose a backpropagation algorithm that can
efficiently calculate gradient in optimization of parameter in
quantum circuit, which outperforms the current parameter search
algorithm while presents the same or even higher accuracy.

Keywords—quantum computing, machine learning, error
backpropagation, gradient

I. INTRODUCTION
There is the famous Di Vincenzo criterion for the question

"What are the standards for quantum computers" or "What are
the elements necessary for a" true "quantum computer?" [1]. Di
Vincenzo criterion contains seven criteria and each one is being
steadily cleared by the development of technology in recent
years, for example, qubits and quantum gates have increased
from tens to thousands with the development of superconducting
technology, spin control technology, and microwave resonance
technology. The Di Vincenzo criterion is important for all items,
but the most difficult thing from the results of recent research
and development is the third criterion, “Coherence time
continues until quantum computation is completed”. This
condition has a deep meaning, and it can be said that it is a life-
and-death problem of a quantum computer that is questioned by
the completeness of physical conditions under which quantum
superposition and quantum entanglement are the key elements
of a quantum computer.

Quantum coherence refers to a coordinated and precise
movement of qubits. However, in reality, qubits are very fragile
and are subject to errors due to the phenomenon of decoherence.
This is the biggest reason why it is difficult to realize quantum
computers. It is difficult to precisely control the quantum state

such as spin as expected, and bit flip and phase inversion occur
due to the fluctuation in surrounding environment and noise.
Such an error is called a quantum error. The number of quantum
errors that potentially exist or the number of quantum errors that
occur in a stochastic normal qubit is an important parameter that
affects quantum computers, and has been actively studied in
recent years. Quantum computer which possess considerable
quantum errors, is called Noisy-Intermediate Scale Quantum
computer (NISQ)[2]. Under the NISQ circumstance, it is
necessary to develop fault-tolerant quantum computation
methods that provide error resilience. There are two solutions to
this problem. One is to perform quantum computing while
correcting quantum errors in the presence of errors. Another
approach is to develop hybrid quantum-classical algorithm
which complete the quantum computing before the quantum
error becomes fatal and shift the rest of task to classical
computer when severe quantum error occurs. The latter
approach has triggered a lot of algorithm such as quantum
approximation optimization algorithm (QAOA) [3] and
variation quantum eigensolver (VQE) [4] and many others [5].

A hybrid quantum-classical algorithm needs to build an efficient
simulation channel to organically connect ‘the quantum and the
classic’. In QAOA, VQE or other hybrid NISQ algorithm, there
exists a challenging task to optimize the model parameter. In a
complete classical approach, the optimal parameter search is
usually categorized as an mathematical optimization problem,
where various approaches bother gradient based and non-
gradient based have been widely utilized. For the quantum
circuit learning, so far most of parameter searching algorithm
are based on non-gradient ones such as Nelder–Mead method
[6], SPSA [7] and most recently a difference method[8].

In this article, we propose an error backpropagation
algorithm on quantum circuit learning to efficiently calculate the
gradient required in parameter optimization. As mentioned
above, current approaches to solve the parameter search is based
on gradient free, which inevitably causes the execution time to

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 9, Number 1, pages 74–82, January 2020

– 74 –

increase significantly as the number of quantum gates using in
the quantum circuit increases. The error backpropagation
method is an efficient method for calculating gradients in the
field of deep neural network based machine learning when
updating parameters using the gradient descent method [9]. By
carefully examining the simulation process of a quantum circuit,
if the input quantum state is |𝜓#$⟩ and a certain quantum gate
𝑈(𝜃) is applied, the output state |𝜓*+,⟩ can be expressed by the
dot product of the input state and quantum gate.

|𝜓*+,⟩ = 𝑈(𝜃)|𝜓#$⟩
On the other hand, the calculation process of a fully connected
neural network without activation function can be written as
𝐘 = 𝐖 ∙ 𝐗, where 𝐗 is the input vector, 𝐖 is the weight matrix
of network, and 𝐘 is the output. It can be seen that the quantum
gate 𝑈(𝜃) is very similar to the network weight matrix 𝐖. This
shows that backpropagation algorithms that is used for deep
neural networks can be modified and be used in the simulation
process of quantum circuit learning.

 The method we proposed makes it possible to greatly
reduce the time for gradient calculation when the number of
qubits is increased or number of gates is increased. As a result,
it is expected that using gradient based backpropagation in the
NISQ hybrid algorithm facilitate parameter search when many
qubits and deeper circuits are deployed.

II. QUANTUM BACKPROPAGATION ALGORITHM
The backpropagation method uses chain rule of a partial

differential to propagate the gradient back from the network
output and calculate the gradient of the weights. Owing to the
chain rule, the backpropagation can be done only at the input /
output relationship at the computation cost of a node. In the
simulation of the quantum computing, the quantum state |𝜓⟩
and the quantum gates are represented by complex value.
Hereafter, we will show the derivation details regarding the
quantum backpropagation in complex valued vector space.

When the input of n qubits is |𝜓#$⟩ and the quantum circuit
parameter network 𝑊(𝜃) is applied, the output |𝜓*+,⟩ can be
expressed as:

	𝑊(𝜃)|𝜓#$⟩ 									= 4 𝑐6
7|𝑗⟩

9:;<

7=>

																																		

= |𝜓*+,⟩																										(1)
where 𝑐6

7 is the probability amplitude of state |𝑗⟩ and @𝑐6
7@
9
=

𝑝6
7 is the observation probability of state |𝑗⟩. If loss function 𝐿

can be expressed by using observation probability determined
by quantum measurement, the gradient of the learning
parameter can be described as:

𝜕𝐿
𝜕𝜃 =

𝜕𝐿
𝜕𝑝6

7 ∙
𝜕𝑝6

7

𝜕𝜃 																																								(2)

Since

𝑝6
7 = @𝑐6

7@
9
= 𝑐6

7𝑐6
EF 																																				(3)

where 𝑐6
EF is the conjugate of 𝑐6

7 , Therefore the gradient of
observation probability can be further expanded as :

𝜕𝑝6
7

𝜕𝜃 =
𝜕𝑐6

7𝑐6
EF

𝜕𝜃 				= 						 𝑐6
EF 𝜕𝑐6

7

𝜕𝜃 + 𝑐6
7 𝜕𝑐6

EF

𝜕𝜃 										(4)

Formula(4) can be further expanded as:

												𝑐6
EF 𝜕𝑐6

7

𝜕𝜃 + 𝑐6
7 𝜕𝑐6

EF

𝜕𝜃 = 𝑐6
EF 𝜕𝑐6

7

𝜕𝜃 + 𝑐6
EF 𝜕𝑐6

E

𝜕𝜃

JJJJJJJJ
								(5)	

	Formula (5) contains complex value but can be nicely summed
out as real value shown below:

𝑐6
EF 𝜕𝑐6

7

𝜕𝜃 + 𝑐6
EF 𝜕𝑐6

E

𝜕𝜃

JJJJJJJJ
= 	2Re N𝑐6

EF 𝜕𝑐6
7

𝜕𝜃 O

= 2Re P
𝜕𝑝6

7

𝜕𝑐6
7
𝜕𝑐6

7

𝜕𝜃 Q															(4)																

Therefore,
𝜕𝐿
𝜕𝜃 = 2Re P

𝜕𝐿
𝜕𝑝6

7
𝜕𝑝6

7

𝜕𝑐6
7
𝜕𝑐6

7

𝜕𝜃 Q.																		(5)

 ST
SUV

W
SUV

W

SXV
W
SXV

W

S6
 can be obtained by error backpropagation in the

same way as the conventional calculation used in deep neural
network [9]. Meanwhile, one advantage of the proposed method
is that quantum gate matrix containing complex value is
converted to real value. Gradient of the loss function with
respect to 𝜃 can be obtained from the real part of the value of
the complex vector space calculated by the conventional
backpropagation. For more detailed derivation regarding
backpropagation at each node using a computation graph. Is
given in the Appendix for reference.

III. EXPERIMENT
Next we conducted the experiment with the supervised

learning tasks including both regression and classification
problems to verify the validity of proposed quantum
backpropagation algorithm.

The quantum circuit consists of a unitary input gate 𝑈#$(𝒙)

that creates an input state from classical input data 𝒙 and a
unitary gate 𝑊(𝜽) with parameters 𝜽 . We use 𝑈#$(𝒙) =
⨂7=>
$;<𝑅]^𝜃7]_𝑅`^𝜃7`_ as proposed in reference [8] a unitary

input gate. (Fig. 1)

Fig.1 a unitary input gate 𝑈#$(𝒙)

– 75 –

We use 𝑊(𝜽) = 𝑈abc
(d)(𝜃d)𝑈efg ⋯𝑈abc

(<)(𝜃<)𝑈efg𝑈abc
(>)(𝜃>) as

proposed in reference [10] 𝑈abc
(i)(𝜃i) = ⨂7=>

$;<𝑈^𝜃7,i_. 𝑈efg is
entangling gates. We use controlled-Z gates (CZ) as 𝑈efg. The
overall quantum circuit is shown in Fig.2:

A. Regression
In regression tasks, the circuit parameters were set to n = 3

and l = 3, that is to say, the number of qubit is 3 and depth of
circuit is 4. The expected value of observable Z for the first
qubit was obtained from the output state |𝜓*+,⟩ of the circuit.
One-dimensional data 𝑥 is input by setting circuit parameters as

	𝜃] = cos;< 𝑥9
𝜃` = sin;< 𝑥

The target function 𝑓(𝑥) was regressed with the output of
twice of the Z expected value. We performed nonlinear
regression tasks to verify the effectiveness of the proposed
approach. A conventional least square loss function was
adopted in the current regression tasks.

𝐿 =
1
2
|2〈𝑍〉 − 𝑓(𝑥)|9																							(6)

And the first deriviation becomes:

𝛿 =
𝜕𝐿
𝜕𝑝 =

𝜕𝐿
𝜕〈𝑍〉

𝜕〈𝑍〉
𝜕𝑝 = ^2〈𝑍〉 − 𝑓(𝑥)_	

𝜕〈𝑍〉
𝜕𝑝 																	(7)

Here, 〈𝑍〉 = 1 ∙ 𝑝> + (−1) ∙ 𝑝<. The error 𝛿 is the one for the
backpropagation.

Before conducting the nonlinear regression, we have
confirmed the validity of the proposed algorithm for linear
regression task, which is not shown here but presented in the
Appendix part for reference. In Fig.3(a) and (b) shows the two
nonlinear task 𝑓<(𝑥) = 𝑥9, which represent a single concave
profile nonlinear problem, and 𝑓9(𝑥) = sin 𝑥, which represents
multi-concave-convex wavy profile for more complex

problems. The noise was also added into the target function for
realistic purpose and the number of training data was chosen as
100 in circuit learning for the two target functions. It can be
clearly seen the quantum circuit based on error backpropagation
performs very well in the regression task. At the initial learning
stage, the results show large deviation from the target function
and at the final leaning stage the regressed curve catches the
main feature of the training data and shows very reasonable
fitted curve. It is noticed at the Fig.3(a), the fitted curve showed
deviation at the left edge of the regression profile. This
deviation is considered as lack of training data at the boundary
and can be either improved by increasing the number of training
data or adding regularization term in the loss function, which
are regularly used in the conventional machine learning tasks.

B. Classification
 In the classification problem, we have modified the quantum
circuit architecture to accommodate increased number of
parameters for both qubit and circuit depth. The initial parameter
set for classification problem were set for qubit n=4 and l=6
(number of layer is 7). Again, here we show only the results for
nonlinear classification problem. The example of bbinary
classification of the two-dimensional data are shown in Fig.7.
Here the dataset was prepared by referring to the similar dataset

Fig. 2 (i) 𝑊(𝜽) is the variational form. l denotes depth
of quantum circuit. (ii) 𝑈efg gate is composed of CZ
gates from qubit j to qubit (j+1) mod n, j ∈
{0, … , 𝑛 − 1}.

(a)

(b)

Fig. 3 (a) Regression results for target function 𝑓<(𝑥) =
𝑥9 + 0.015𝑁(0,1) , (b) Regression results for target
function 𝑓<(𝑥) = 𝑠𝑖𝑛	𝑥 + 0.015𝑁(0,1),

– 76 –

from scikit-learn[11]. We consider two representative nonlinear
examples: one is dataset of make_circles and another one is
make_moons and we consider the make_moons possess more
complicated nonlinear feature than make_circles.

For the output state |𝜓*+,⟩, we calculated the expected value
〈𝑍<〉	and	〈𝑍9〉 of observable Z using the first and second qubits.
A softmax function was applied to the output for 〈𝑍<〉	and	〈𝑍9〉
and continuous probability between 0 and 1 is thus obtained. For

the training purpose, a typical cross-entropy loss function was
adopted to generate the error and was further backpropagated to
update the learning parameter.

𝐿 = 𝑑# log[𝑝] + (1 − 𝑑#) log[1 − 𝑝]									(8)
The cross-entropy formula looks complicated but its first
derivative upon probability 𝑝 reduced to the form of error
similar to the regression.

𝛿 =
𝜕𝐿
𝜕𝑝 = 𝑝 − 𝑑#																																											(9)

For the proof of concept, limited number of training data was
set as 200 and half of the data was labeled as ‘0’ , the rest half
of data was labeled as ‘1’. For comparison we have also applied
the classical support vector machine (SVM), a toolkit attached
in the scikit-learn package to the same datasets. The results
from SVM are served as a rigorous reference for the validity
verification of the proposed approach.

Two-dimensional data 𝒙 is input by setting circuit parameters
as:

𝜃9#] = cos;< 𝑥<9,

𝜃9#` = sin;< 𝑥< or

𝜃9#;<] = cos;< 𝑥99,

𝜃9#;<` = sin;< 𝑥9.

(𝑖 = 0, 1, … , 𝑛 − 1)
 Fig.4 shows the learnt results for two non-linear classification
tasks. Fig.4 (a) and (e) show 2-dimensional training data with
value ranged between (-1,1) were chosen as the training dataset.
Here the noise was not added for simplicity and the training data
with added noise will be presented elsewhere showing the
similar tendency as reported here. Fig.4(b) shows the test results
based on the parameter using the dataset from Fig.4(a). A
multicolored contour-line like classification plane was found in
Fig.4(b). The multicolored value corresponding to the
continuous output of the probability from the sofmax function.
a typical two-valued region can be easily determined by taking
the median of the continuous probability as the classification
boundary. This is shown in the Fig.4(b) with line colored by pink.
Reference results simulated using scikit-learn-SVM is shown in
Fig.4(c). Since SVM simulation treats the binary target
discretely, the output shows exact two value based colormap of
the test results. It can be easily seen here that the results shown

Fig. 4 Quantum circuit learning results using error backpropagation for nonlinear binary classification problem with 4 qubit and 7 layer
depth: (a) Training data set for make_circles, red for label ‘0’ and blue for label ‘1’ ; (b) Test results using the learnt parameter using
the 200 make_circles dataset, pink line corresponding to the median boundary of the continuous probability; (c) scikit-learn-SVM
classification results using the learnt support vectors; (d) Training data set for make_moons, red for label ‘0’ and blue for label ‘1’ ;; (e)
Test results using the learnt parameter under the 200 make_moon dataset, pink line corresponding to the median boundary of the
continuous probability; (f) scikit-learn-SVM classification results using the learnt support vectors.

(a) (b)

(d)
(e)

(c)

(f)

– 77 –

in Fig.4(b) is in great consistence with the SVM results.
Especially the location of median boundary (pink line)
corresponds exactly to the SVM results. For the dataset of
make_moons, the situation become more complicated due to the
increased nonlinearity in the training data. Fig.4(d), (e) and (f)
showed the same simulation sequence as the data of
make_circles. However, it is found both the results from error
backpropagation and SVM showed misclassification. The
classification mistake is usually occurred near the terminal edge
area where the label ‘0’ and label ‘1’ overlapped with each other.
Taking a closer look at the test results shown in Fig.4(e) and (f),
it can be found that the misclassification presented in a different
manner. For quantum circuit learning, the misclassification
occurs mostly at the left side of label ‘0’ in the overlapping area.
For SVM, the misclassification is roughly equally distributed for
both label ‘0’ and label ‘1’ indicating the intrinsic difference
between these two simulation algorithms. Further investigation
aiming at improving the test accuracy for the make_moons data
were also conducted and the results are shown in Fig.5. We
consider that one of reason for misclassification occurred in
Fig.4(e) would be attributed to the limited representation ability
due to limited depth of quantum circuit. This can be confirmed
from Fig.5 where the quantum circuit with varied layer thickness
ranging from 4, 7 and 10 are given. It can be seen that the by, 4
layer of circuit showed almost linear separation plane, but with
the increase of the circuit layer thickness, the classification
boundary (separation plane) becomes more nonlinear. The layer
thickness of 10 showed great improvement of separation plane
to reflect the hidden ‘moon’ feature of the training data. It should
be mentioned here that the number of training data is kept at 200.
It is apparent that classification accuracy will dramatically
increase with increase of number of training data. Here we
intentionally reduced the number for training data set so as to
magnify the effect from quantum circuit depth.

C. Computation efficiency.
 After having confirmed the validity of the proposed
backpropagation on various regression and classification
problem, we will show one great advantage of using
backpropagation to perform parameter optimization over other
approaches. It has been rigorously in deep neural network based
machine learning field that the error backpropagation method
shown several magnitude faster than finite difference method. In
this work, we have also conducted benchmark test to verify

where there is decisive advantage of using backpropagation
algorithm in quantum circuit learning. Fig.6 shows the
computation cost comparison among three methods: a finite
difference method proposed in reference [8], the popular Nelder-
Mead method from SciPy, which is mostly widely used in
current quantum circuit leaning field and the proposed method
based on backpropagation. This comparison was performed
under 4 qubit. The horizontal axis is the circuit depth 𝑙, and the
vertical axis is the execution time[sec] per 100 iterations. The
number of parameters corresponding to the circuit depth 𝑙 is
given as :

𝑁U�����,�� = (2	𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛	𝑔𝑎𝑡𝑒𝑠) × (4𝑞𝑢𝑏𝑖𝑡) × (𝑙 + 1).

 We implemented the three method on the same make_moons
dataset and record the computation time costed per 100
iterations. The depth of quantum circuit is varied from 5 to 20 at
the interval of 5. It can be clearly seen there is dramatic
difference in computation time costed for 100 iteration learning
steps. Finite-difference method showed the worst computation

(a) (b) (c)

Fig. 5 Effect of quantum circuit depth on the classification accuracy. (a) 4 layer of quantum circuit with 4 qubits. (b) 7 layer
of quantum circuit with 4 qubits ; (c) 10 layer of quantum circuit with 4 qubits

Fig. 6 Comparison of computation cost for different
approaches .

– 78 –

efficiency, as has been mentioned above and demonstrated in
deep neural network related machine learning field. The
computation cost rises exponentially as the thickness of the
circuit increases, limiting its application based on its current
form. The Nelder-Mead method is much more computationally
efficient than finite difference method by showing a linear
increase of computation cost for each 100 iteration learning
steps. Since the computation is recorded at every 100 iterations.
for a task like the make_moons dataset,

In contrast, the backpropagation method proposed here showed
dramatic advantage over all other methods by shown an almost
constant dependency on the depth of quantum circuit. The
computation time is recorded at depth of 20 layer as 3.2 seconds,
which is almost negligible when compared to the recorded value
at the same 20 layer thickness : 56 seconds by using Nelder-
Mead method and 458 seconds by using Finite difference
method.

D. Impltemention scheme on real quantum computer.
So far we have focused our results on the simulation using

quantum simulator. Implementing architecture when using a real
machine such as NISQ type quantum is described in Fig.7. In
order to use the error backpropagation method, a quantum state
|𝜓⟩ is required to get prepared at the initial stage. Therefore, as
shown in the figure, a quantum circuit having the same
configuration as the real quantum circuit must be prepared as a
quantum simulator on classical computer. It should be noticed
here that his could not be considered as additional load for the
quantum computing scientist since for fabricating a quantum
computer at the hardware base, it needs its counterpart of
quantum circuit simulator to monitor and diagnose the qubits
and gate error. This is especially true since a quantum computer
is not allowed to be disturbed during the working condition
unlike the classical computer. Therefore, for a real quantum
computer, it always requires a quantum simulator ready for use
at any time. That means we can always access to the quantum
simulator as shown at the right side of Fig.7 to examine and
obtain detailed information regarding the performance of
corresponding real quantum computer. Observation probability
for each state @𝜓7� can be calculated by shooting 𝑅 times at the
real quantum computer side. The observation probability
obtained from the real quantum machine is then passed to the
classical computer, and the quantum circuit in the simulator for
simulation is then used. The parameter 𝜃 can be updated using
backpropagation since all the intermediate information is
available at the simulator side. After the parameter𝜃∗ is updated

at the simulate side, it will return to the real quantum machine
for next iteration quantum simulation. The implementing the
backpropagation will be reported elsewhere.

IV. CONCLUSION
We proposed a backpropagation algorithm for quantum

circuit learning. The proposed algorithm showed success in
both linear and nonlinear regression and classification problem.
Meanwhile dramatic computation efficiency by using the error
backpropagation based gradient circuit learning rather than the
gradient free method such as Finite difference method or
Nelder-Mead method. The reduction of computing time is
surprisingly up to several magnitude high when compared to
the conventional method. A backpropagation embedded
quantum circuit paves the path toward large scale and deep
quantum circuit learning for complicated feature extraction
problem and intractable optimization problem by designing
quantum advantage oriented hybrid NISQ algorithm.

REFERENCES

[1] DiVincenzo Fortschritte der Physik. 48 (9–11): 771–783 (2000)
[2] John Preskill, arXiv:1801.00862 (2018)
[3] Peruzzo, A. et al. Nature Commun. 5, 4213 (2014).
[4] Farhi, E., et al., arxiv.org/abs/1411.4028 (2014).
[5] K, Shiba,et al., arXiv:1906.01196(2019)
[6] Nelder, John A.; R. Mead Computer Journal , 7,313 (1965).
[7] Spall, J. C. IEEE Transactions on Auto.Cont., 37, 332(1992).
[8] Mitarai, K. arxiv.org/abs/1803.00745 (2018).
[9] Rumelhart, David E. et al., Nature. 323 (6088): 533–536 (1986)
[10] Vojtch Havl´ıˇcek, et al., Nature 567, 209–212 (2019).
[11] Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

Fig.7 Implementation architecture of error backpropagation-based quantum circuit learning on the real NISQ type
quantum computer

– 79 –

V. APPENDIX

A. dot product node
Backpropagation of dot product node.

Fig.1 Graph of dot product node.

𝐗 is input state. The size of 𝐗 corresponds to N(= 2$) of states with n qubits. 𝐖 is the network weights and corresponds to a gate
in the quantum circuit. The size is N × N.

𝐗 = (𝑥<, 𝑥9, … , 𝑥�)�

𝐖 = P
𝑤<,< ⋯ 𝑤<,�
⋮ ⋱ ⋮

𝑤�,< ⋯ 𝑤�,�
Q

Output 𝐘 is written as 𝐘 = 𝐖 ∙ 𝐗. Here, when there is a gradient ST
S𝐘

 with respect to 𝐘 of the loss function 𝐿, the gradient of each 𝐿
with respect to 𝐗 and 𝐖 is calculated as follows.

𝜕𝐿
𝜕𝐗 = 𝐖� ∙

𝜕𝐿
𝜕𝐘

𝜕𝐿
𝜕𝐖 =

𝜕𝐿
𝜕𝐘 ∙ 𝐗

�

B. rotation gate 𝑼(𝜃) node
The weight 𝐖 in the full-connected network is made to correspond to the rotation gate in the quantum circuit.

𝐖 = £
𝑤<,< 𝑤<,9
𝑤9,< 𝑤9,9¤ = N

𝑢<,<(𝜃) 𝑢<,9(𝜃)
𝑢9,<(𝜃) 𝑢9,9(𝜃)

O = 𝑼(𝜃)

Unlike conventional full-connected networks, the elements of the unitary gate 𝑼(𝜃) matrix are not independent of each other and
have a common parameter 𝜃. Therefore, the gradient of 𝐿 with respect to 𝜃 is obtained by backpropagation using the calculation
graph shown in Fig. 2.

– 80 –

For example, we chose 𝑅` gate,

𝑼(𝜃) = 𝐑𝐲(𝜃) = §
cos

𝜃
2 −sin

𝜃
2

sin
𝜃
2 cos

𝜃
2

¨	,

𝜕𝐑𝐲(𝜃)
𝜕𝜃 = §

𝜕𝑢<,<
𝜕𝜃

𝜕𝑢<,9
𝜕𝜃

𝜕𝑢9,<
𝜕𝜃

𝜕𝑢9,9
𝜕𝜃

¨ = §
− sin

𝜃
2 −cos

𝜃
2

cos
𝜃
2 −sin

𝜃
2

¨	,

We define vector 𝒊𝟎 = [1 1] and 𝒊𝟏 = 𝒊𝟎�. The gradient is

𝜕𝐿
𝜕𝜽𝒊𝟏

= §

𝜕𝐿
𝜕𝜃

𝜕𝐿
𝜕𝜃

𝜕𝐿
𝜕𝜃

𝜕𝐿
𝜕𝜃

¨ =

⎣
⎢
⎢
⎢
⎡
𝜕𝐿
𝜕𝑢<,<

𝜕𝑢<,<
𝜕𝜃

𝜕𝐿
𝜕𝑢<,9

𝜕𝑢<,9
𝜕𝜃

𝜕𝐿
𝜕𝑢9,<

𝜕𝑢9,<
𝜕𝜃

𝜕𝐿
𝜕𝑢9,<

𝜕𝑢9,<
𝜕𝜃 ⎦

⎥
⎥
⎥
⎤
	,

𝜕𝐿
𝜕𝜽𝒊𝟎

= 𝒊𝟏� ∙
𝜕𝐿
𝜕𝜽𝒊𝟏

	,

Fig. 2 Graph of rotation gate 𝑼(𝜃) node

– 81 –

𝜕𝐿
𝜕𝜃 =

𝜕𝐿
𝜕𝜽𝒊𝟎

∙ 𝒊𝟎�.

From above,

𝜕𝐿
𝜕𝜃 =

𝜕𝐿
𝜕𝜽𝒊𝟎

∙ 𝒊𝟎� = ²𝒊𝟏� ∙
𝜕𝐿
𝜕𝜽𝒊𝟏

³ ∙ 𝒊𝟎�

𝜕𝐿
𝜕𝜃 =

𝜕𝐿
𝜕𝑢<,<

𝜕𝑢<,<
𝜕𝜃 +

𝜕𝐿
𝜕𝑢<,9

𝜕𝑢<,9
𝜕𝜃 +

𝜕𝐿
𝜕𝑢9,<

𝜕𝑢9,<
𝜕𝜃 +

𝜕𝐿
𝜕𝑢9,9

𝜕𝑢9,9
𝜕𝜃

C. Observation Probability node
Output state |𝜓*+,⟩ is

|𝜓*+,⟩ = 𝑐>|0⟩ + 𝑐<|1⟩ +⋯+ 𝑐�;<|𝑁 − 1⟩,
where 𝑐7 is the probability amplitude and satisfies	|𝑐>|9 + |𝑐<|9 + ⋯+ |𝑐�;#|9 = 1.

Fig. 3 Graph of the probability amplitude node

The gradient of 𝑝# with respect to a probability amplitude 𝑐7 can be calculated as follows. 𝑐F́ is the complex conjugate of 𝑐7.

𝜕𝑝7
𝜕𝑐7

=
𝜕
𝜕𝑐7

^𝑐7𝑐EF_ = 𝑐EF

– 82 –

