
Optimal Resource Allocation for Machine Learning
Tasks in Distributed Computing Environments

1st Shoya Kyan
Graduate School of Science and Engineering,

University of the Ryukyus
Okinawa, Japan

k198585@ie.u-ryukyu.ac.jp

2nd Morikazu Nakamura
Computer Science and Intelligent Systems

University of the Ryukyus
Okinawa, Japan

morikazu@ie.u-ryukyu.ac.jp

Abstract—This paper considers resource allocation problems in
distributed computing environments for machine learning tasks
based on mathematical programming and greedy algorithms.
We implement a distributed computing platform based on
Docker, Kubernetes, and Rancher, mainly for machine learning
applications. The simulation results show how the prediction
quality of the computation time of machine learning tasks affects
scheduling. We also verify our approach by evaluating real
machine learning tasks for predicting the backbone structure
of proteins.

Index Terms—Resource Allocation, Distributed Environments,
Mathematical Programming Problems, Petri nets

I. INTRODUCTION

As IoT machine learning is being applied to many aspects
of our daily lives, the demand for efficient computational
resources is increasing. Major cloud services and many other
cloud environments support enormous computation demands,
but it is not always possible to allocate resources efficiently.
Although it is possible to utilize a scheduling method based on
meta-heuristics in container technology, it is still in its infancy
[1].

Many researchers have treated this problem in the literature,
such as container scheduling that takes energy costs into ac-
count [2], priority queue based algorithms [3], multi-objective
optimization scheduling [4], task scheduling for optimizing
cost value based on completion time [5], container scheduling
for CNC systems [6], and so on.

The resource allocation problem is difficult to solve within
a reasonable computation time except for some exceptional
cases, such as processors with identical performance and all
computation tasks of uniform size. However, recent advances
in mathematical programming algorithms have shown that we
can solve even the practical size of such problems within
a realistic computational time if we formulate them in in-
teger linear programming. Our previous study developed an
algorithm to generate integer linear programming problems
for scheduling and resource allocation problems based on
the Petri Net model. The method makes it possible to use
the mathematical programming solver easily. Machine learn-
ing processes are a good practical example since their task
flows are relatively typical, series of sequential tasks of pre-
processing, learning, and prediction.

In this paper, we propose a static scheduling method
for processing many machine learning processes in a cloud
environment. Our scheduling method can process multiple
sequential processes with numerous computational resources
efficiently.

In this study, we experiment with three scheduling policies,
such as random allocation (RA) and time-ordered greedy allo-
cation (Greedy), and the mathematical programming approach
(MIP) with a simulator and a real distributed environment.

II. PRELIMINARIES

A. Middleware for Computing Systems

Docker [7] is open-source software for the virtualization of
containers, where we can create and set up many computing
servers in distributed environments.

Kubernetes [8] is an orchestration tool for open-source soft-
ware containers. Conventional container management requires
manual monitoring of container resources. However, Kuber-
netes makes resource management automated. The smallest
unit of an application running on a Kubernetes cluster is called
a pod. Also, there is a job that creates one or more pods and
specifies the number of completed pods.

Rancher [9] is also open-source software to centrally man-
age Kubernetes clusters, both cloud and on-premises, from a
single dashboard.

B. Petri Nets

A Petri net is a directed bipartite graph represented by
PN = (P, T, Pre, Post). Place P = {p1, p2, p3, ..., pn} and
transition T = {t1, t2, t3, ..., tn} are connected by a weighted
directed arc. Pre(p, t), Post(p, t) represents the weight of
the arc connecting the place p to the transition t to the
place p. Arcs without a weight mean weight 1. The places
entering to transition t is called the input place set of t,
noted by •t, and the places exiting from t is called the
output place set of t, noted by t•, respectively. Non-negative
integer tokens are placed on places. The distribution of the
tokens on the place is called marking, we express it by
vector M⊤ = (M(p1),M(p2),M(p3), ...,M(pn),M(pn)),
where M(pi) means the number of tokens placed in place pi.
Therefore, the token distributions in the net model represent

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 10, Number 1, pages 20–24, January 2021

– 20 –



T1

T4

T7

T2

T5

T8 T9

T6

T3P1

P5

P9 P10

P6

P2 P3

P7

P11 P12

P8

P4

RS1
RS2

RS3

Fig. 1. Petri Net Example of Resource Allocation

the state of the system. M0 represents the initial state of the
system.

Transition t is enabled when M(p) ≥ Pre(p, t), for all
p ∈• t. Enabled transitions can fire. The firing of t removes
Pre(p, t) tokens from each place in the input place •t and
locate tokens of Post(p, t) in each output place in t•. The
firing of a transition represents the occurrence of an event.
The marking before and after the firing indicates the state
before and after the event, respectively. Therefore, a series of
marking changes by firings of transitions represents the system
behavior. Colored Petri nets, an extension of Petri nets, can
treat values with tokens and time. Colored Petri nets enable
more flexible modeling by adding information to the tokens.

III. PETRI NET MODEL FOR RESOURCE ALLOCATION

The resource allocation problem is a type of scheduling
problem. It is one of the combinatorial optimization problems
that minimize the total amount of resources used while gen-
erating the overall schedule by assigning resources to tasks.
Usually, the length of the overall schedule (delivery date) is
given as a constraint or to be minimized.

The following are the conditions for resource allocation
problems.

1) Each task requires the requested amount of resources
2) There may be more than one resource of each type. And

the same resource can handle different capabilities.
3) Each resource is always available (no failure)
4) The scheduler does not allocate resources to another task

until the processing of the task complete.
5) The cost and capacity of the resource are given in

advance.
Figure 1 shows three sequential systems of four tasks, each

of which assigns appropriate resources from the resource place
required by each task. Each resource place represents a pool of
resources, and the colored tokens indicate computing resources
with a variety of performance (e.g., processing speed, memory
size).

IV. EXPERIMENTAL EVALUATION

This section evaluates the performance of three resource
assignment policies, random assignment (RA), greedy assign-
ment (longer task first) (Greedy), and mathematical program-
ming (MIP) with simulation and a real environment.

A. Simulation

In this subsection, we describe our simulator experiments.
1) Simulation Overview: The simulator has three main

functions: generating data, deciding allocation according to
the scheduling policy, and visualizing the task schedule from
the allocation results.

Each task data consists of three information: task ID,
predicted processing time, and actual processing time. The
processing time is generated randomly using a uniform distri-
bution in an arbitrary preset range. The actual processing time
is also generated from the predicted processing time by the
box-muller method, assuming that the error from the prediction
follows the normal distribution.

We characterize computing nodes by two information: ID
and its processing performance (PP). Processing performance
is a positive number, where its value 1 means the node can
execute the task in the processing time given as the actual
processing time. PP=0.5 means that the node can complete
the task within twice the processing time, and PP=2 in 1

2 of
the given actual processing time.

Once the resource set and the task sets are given, the
scheduler assigns a resource node to each task based on the
scheduling policy. In this experiment, we employed the three
scheduling policies, RA, Greedy, and MIP. We automatically
generated the mixed integer programming problems from the
Petri net model shown in Figure 1.

The quality of the schedule based on Greedy and MIP
strongly depends on the quality of the prediction. We assume
that the difference between the predicted processing time and
the actual one can be represented as a random variable of a
normal distribution with the mean 0 and the standard deviation
σ. In this experiment, we generate the predicted time for 30
tasks with uniform distribution of range 1 to 1200 and vary
the standard deviation σ from 0 to 500.

Our scheduler assigned a computing resource to each task
based on the three scheduling policies, RA, Greedy, and MIP.

We used the same processing performance of the same node
for all the measurements through the experiment, as shown in
Table I.

TABLE I
PROCESSING PERFORMANCE PER COMPUTING NODE

Node Name Processing Performance
node0 1.6351
node1 2.9753
node2 0.8506

2) Experimental Results: Figure 2 shows the average of the
makespan by varying the standard deviation. The x-axis shows
the standard deviation σ of the random variable representing

– 21 –



the difference from the predicted processing time and the y-
axis the makespan.

Fig. 2. Mean Value of Makespan vs. Standard Deviation

To show the load imbalance among computing resources,
Figure 3 depicts the difference between the earliest node and
the latest completion one. The horizontal axis is the standard
deviation of the difference between the predicted and the actual
processing time. The vertical axis is the difference between the
earliest and the latest nodes.

Fig. 3. Load Imbalance vs. Standard Deviation of Prediction Errors

3) Discussion: Figure 2 shows that MIP has the shortest
makespan when there is no difference between the predicted
and measured values (standard deviation of 0). However,
from a standard deviation of more than 200, the MIP-based
scheduling becomes worse than the others. We confirm that
the MIP-based scheduling is not effective when the quality of
prediction is low.

From Figure 3, RA and Greedy do not change much for the
prediction quality. Since both of RA and Greedy are dynamic
scheduling, the idle time in nodes flexibly is reduced. At the
same time, MIP scheduler is a static assignment. Therefore,
the scheduling quality is affected by the prediction quality.

B. Experiments in Real Environment

We also performed experiments in a real environment.
1) Developed Distributed Environment: We configured the

cluster using Rancher from the perspective that it is possible
to build a highly scalable parallel and distributed environment.
The cluster consists of four nodes: two nodes using CentOS
and the remaining two Ubuntu. Table II shows the node
information for the cluster.

TABLE II
CLUSTER CONFIGURATION

Node name Role CPU cores memory
ubuntu4 Rancher Server 6 cores 64GB
anago etcd, Control Plane,

Worker
6 cores 32GB

centos Worker 6 cores 64GB
ubuntu Worker 6 cores 64GB

We configured Figure 4 as a distributed environment. This
distributed environment performs tasks in three main steps. In
the first step, each pod on each node accesses the queue keyed
by the node name where the pod itself exists to Redis on the
same cluster. In the second step, we get a CSV corresponding
to the task number obtained in the first step via NFS. In the
third step, each pod is trained using the CSV obtained in the
second step. Each pod stores the results in MySQL on the
same cluster after the processing. Each pod runs these three
steps as many times as we set during deployment.

Rancher Server
(Kubernetes Cluster)
Redis(Task Queue)

node 1 node n

MySQL

0
3
4

node1

1
2

10

node n

training data

NFS

Pod Pod

1. get the next task information 2. get the training data 
for the task

3. store the results of the task

Fig. 4. Cluster Configuration

2) Automatic Generation of Mixed Integer Programming:
Figure 5 shows the colored Petri-net model of the
resource assignment problem. The place named
RESOURCE includes seven computing resources
{anago, centos, centos2, centos3, ubuntu, ubuntu2, ubuntu3},
while the place TASK three machine learning processes.

Step 1:Export the Petri Net model of a figure 5 into XML
format file, and convert it into a mixed-integer linear

– 22 –



programming problem in lp file format using our
original integer programming tool PN2MIP[7].

Step 2:Solve the mathematical program in the lp file using
a solver.

Step 3:Extract necessary information for resource allocation
from the output sol file and converts it to JSON
format.

Step 4:Generate a yml file to decide which node to allocate
a pod to based on the JSON file.

Process1

TASK

1`ID1TS1823++
1`ID2TS4797++
1`ID3TS5414

Process2

MachineRESOURCE

1`anago++1`centos++1`centos2++
1`centos3++1`ubuntu++1`ubuntu2++1`ubuntu3

Learn

Fig. 5. Petri Net Model for Machine Learning Process

3) Prediction: We employ a simple regression algorithm
to predict learning time, linear regression of variables with
the maximum degree three. The feature vector is composed
of the size of the training data. We generated the feature
vector sets by varying the set size from 1,000 to 10,000
with interval 1,000 and measured processing time with two
specific learning algorithms, the Lasso regression, and the
decision tree regression, on our computing nodes shown in
Table labeltab:cluster-info.

For the prediction process, we constructed the function to
predict the processing time when we input the task size and
the computing resource.

In this experiment, we performed machine learning tasks
to estimate the dihedral angles of proteins. In this task, we
collected short amino acid sequences with calculated dihedral
angles for training data and employed two learning algorithms,
the Lasso regression, and the decision tree regression. In the
experiment, we measured and compared the total processing
time of the schedules generated based on RA, Greedy, and
MIP.

4) Experimental Results: We firstly measured ten times the
computation time for each scheduling policy, RA, Greedy, and
MIP in the Lasso regression and the decision tree regression
for 30 tasks. Table III and Table IV show the makespan needed
for training by the Lasso and the decision tree, respectively.
The results for the Lasso show the order of the length of
makespan, RA > MIP > Greedy. In the decision tree ones,
the MIP is the worst, followed by RA and Greedy.

5) Discussion: As for the Lasso regression, we found that
RA is the slowest. Figure 6 is a Gantt chart for RA. Each

TABLE III
AVERAGE MAKESPAN PER SCHEDULING POLICY [SEC] (LASSO)

RA Greedy MIP
Average execution time 1572.2 1480.2 1549.3

TABLE IV
AVERAGE MAKESPAN PER SCHEDULING POLICY [SEC](DECISION TREE)

schedule1 schedule2 schedule3
Average run time 7781.2 8587.6 9166.4

computing node is colored differently. The colored rectangles
are when tasks are executed, and the blank space between
them is the idle time. Looking at Figure 6, we can see that
a task with a large processing time is allocated at the end of
the ubuntu node overall execution time is longer, and RA is
worse than the others.

Fig. 6. Grantt Chart of Rasso Regression Tasks based on RA Policy

When we derived the makespan from the predicted time,
the MIP was the fastest. However, the MIP was not the fastest
in terms of the actual measured processing time since the
prediction accuracy was poor. The coefficient of determination
between the predicted and measured values was −171.17.
Therefore, the fact leads to the worse quality of the MIP-based
scheduling.

Concerning the decision tree regression, the MIP was the
slowest. The coefficient of determination between the pre-
dicted and measured values for all nodes is relatively good
at 0.58. Table V summarizes the coefficients of determination
of the predicted and measured values for each individual node.

Table V shows that the centos node has a bad coefficient
of determination compared to the other computing nodes. The
coefficient of determination is worse for certain nodes; that
is, the scheduler assigned many data outside the regression
equation to a specific node. The fact also makes us consider
the typical computer specification and computing resources
situation when we collect training data.

– 23 –



TABLE V
COEFFICIENT OF DETERMINATION OF PREDICTIONS AND

MEASUREMENTS PER NODE

Node name coefficient of determination
anago 0.6284921
centos -0.020542
ubuntu 0.774317

V. CONCLUDING REMARKS

This paper presented some evaluation results of our resource
allocation scheme for machine learning tasks. Simulation
experiments showed that the MIP-based resource scheduling
does not seem efficient when the processing time prediction
is low quality, while the greedy algorithm performs very well.
Even the greedy algorithms seem to worsen if we mix a
wide variety of learning algorithms since the prediction quality
becomes lower.

We currently improve the prediction algorithm of learning
time, where the algorithm can treat several prediction models
and computing resources.

REFERENCES

[1] C. Kaewkasi and K. Chuenmuneewong, “Improvement of container
scheduling for Docker using Ant Colony Optimization,” 2017 9th
International Conference on Knowledge and Smart Technology (KST),
Chonburi, 2017, pp. 254-259.

[2] M. Sureshkumar and P. Rajesh, “Optimizing the docker container
usage based on load scheduling,” 2017 2nd International Conference
on Computing and Communications Technologies (ICCCT), Chennai,
2017, pp. 165-168.

[3] Madhumathi RamasamyMathivanan BalakrishnanChithrakumar
Thangaraj, “Priority Queue Scheduling Approach for Resource
Allocation in Containerized Clouds,” Inventive Computation
Technologies, ICICIT 2019. Lecture Notes in Networks and Systems,
vol 98, Springer, Cham, 2019.

[4] Liu, B., Li, P., Lin, W. et al., “A new container scheduling algorithm
based on multi-objective optimization,” Soft Comput 22, 7741-7752
(2018).

[5] P. Dziurzanski and L. S. Indrusiak, “Value-Based Allocation of Docker
Containers,” 2018 26th Euromicro International Conference on Parallel,
Distributed and Network-based Processing (PDP), Cambridge, 2018, pp.
358-362.

[6] H. Jin et al., “Architecture Modelling and Task Scheduling of an
Integrated Parallel CNC System in Docker Containers Based on Colored
Petri Nets,” in IEEE Access, vol. 7, pp. 47535-47549, 2019.

[7] Docker, https://www.docker.com
[8] Kubernetes, https://kubernetes.io
[9] Rancher, https://rancher.com

[10] Morikazu Nakamura, Takeshi Tengan, Takeo Yoshida, “A Petri Net
Approach to Generate Integer Linear Programming Problems,” IEICE
Trans. on Fundamentals, vol. E102.A, no. 2, pp.389-398, 2019.

– 24 –


