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Abstract—Reinforcement Learning (RL) techniques are 

often used to analyze and evaluate the strategies of virtual game 
to maximize a well-defined preset reward. However, in realistic 
sports game such as American football the reward functions are 
hardly definable. Meanwhile, how many yards are gainable on 
the next offence in real American football is also usually 
uncertain during strategy planning. In order to tackle these 
issues, we propose a stochastic inverse reinforcement leaning 
(IRL) algorithm. The expert data for IRL are built by using the 
American football 2017 season event data in National Football 
League (NFL). The stochastic state transition distribution is 
extracted from the same dataset. A mixture density network is 
used to learn the probabilistic distribution. At the last, 
simulation results from the maximum entropy IRL are 
compared with the ones from mathematical two-stage stochastic 
optimization.  
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I. Introduction 
Reinforcement leaning (RL) technics have been applied in 

many fields to analyze and evaluate strategies and assistant 
decision making. For example, virtual games RL programs like 
AlphaGo[1], AlphaGo Zero[2] and Atari[3] have defeated 
humans players. Moreover, in sports fields like Ice Hockey[4], 
Soccer[5], and Basketball[6], RL technics were used to 
evaluate the decision-making and player behavior. However, 
realistic sports game such as in American football, the reward 
functions for value approximation are hardly definable[7]. 
Meanwhile, as opposed to maze problem, when agent act in 
each state it is uncertain for next state transition as the yard to 
be gained in American football. The uncertainties are varied by 
the condition of players, weather, and game place and etc. Thus 

the state transition becomes stochastic. Furthermore, under 
such a situation, it is difficult for the coach to select and decide 
tactics of each game in real play. The purpose of this work is 
aimed to tackle these problems by proposing a stochastic 
inverse reinforcement learning (IRL) algorithm. For our 
experiments, we choose maximum entropy (Max-Ent) IRL[8], 
in which the agents learn reward function from the expert 
demonstration data based on the professional play-by-play in 
NFL 2017 season. The dataset contains 9516 plays of 21 games 
by 32 teams. The information includes what kind of play 
choices each professional team have made under each situation. 
Our model learns from this data and learn a policy to decide 
which tactic is best to decide in uncertainly situations. We 
expand the Max-Ent IRL algorithm to handle the stochastic 
state transition by introducing Mixture Density Network 
(MDN) [9] to learn the probabilistic distribution of next state. 
At the last, simulation results from the maximum entropy IRL 
are compared with the ones from mathematical two-stage 
stochastic optimization. 

 

II. Background 
1. Max Entropy Inverse Reinforcement Learning 

In Max Entropy IRL [8] reward function 𝑅 represented by 
the frequency of the agent visits to states 𝑠 ∈ 𝑆, where 𝑆 is a 
finite set of states. The function is parameterized by some 
rewards weights 𝜃.  

𝑅(𝑠, 𝜃) =*𝜃! ∙ ∅(𝑠")			
"

																																				(1) 

Here ∅  is the visiting trajectory. The reward function 𝑅  is 
used to learn the policy 𝜋∗. 
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𝜋∗(𝑎|𝑠") = 𝑎𝑟𝑔𝑚𝑎𝑥 ,𝑅(𝑠"#$, 𝜃) + 𝛾23𝑃(𝑠"#$|𝑠", 𝑎)𝑉%(𝑠"#$)6
&!"#

7 (2) 

The transitions probability of moving from state 𝑠 to next state 
𝑠′ as a result of  𝜋(𝑎)  is represented as 𝑃(𝑠$|𝑠, 𝑎). For each 
states state 𝑠, 𝑉 denote the state value under a policy 𝜋. The 
visiting frequency 𝜇	for each training 𝑇 is defined as follows: 
𝜇!(𝑠& , 𝜃) = **𝜇!'((𝑠")𝜋∗(𝑎|𝑠")

)$∈+,∈-

𝑃(𝑠".(|𝑠" , 𝑎)						(3) 

The probability of visiting frequency for each state is given as 
a sum of visiting frequency 	𝜇. 

𝕡(𝑠&|𝜃) =*𝜇"

!

"/(

																					(4) 

Expert visiting frequency 𝜇′ of each state is extracted from 
data. To update parameter 𝜃 is calculated using the difference 
of visiting frequency between expert reward and the result of 
𝕡(𝑠&|𝜃) based on policy 𝜋∗. 

𝜃 ← 𝜃 + 𝛼?𝜇$ − 𝕡(𝑠&|𝜃)A									(5)	
The updated 𝜃  is used to evaluate the weight of learning 
reward by formula (1).  

 
2. Mixture Density Network 

Mixture Density Network [9] is used to learn uncertain 
realistic models and has the merits of providing a probability 
distribution over a range of outputs given the input [10]. The 
technics learn multiple Gaussian distribution as follows. 
Given vector 𝒙 of input, the probability of 𝑦 given 𝑥  𝑝(𝑦|𝒙) 
can be approximated as:  

𝑝(𝑦|𝑥) = 	*𝜋0(𝒙)
1

0/(

𝒩?𝑦Hµ0(𝒙), 𝜎02(𝒙)A							(6)	

*𝜋0(𝒙)
1

0/(

= 1																																																				(7)	

Here	𝑘  is the index of corresponding mixture component, 
they are up to 𝐾 . The parameter 𝜋0(𝒙) denote the mixing 
coefficients of 𝑘 th Gaussian distribution. 𝒩  means 𝑘 th 
Gaussian distribution. 

𝒩(𝑦|𝜇0(𝒙)	, 𝜎02(𝒙)) =
1

R2𝜋𝜎02(𝒙)
exp	 U−

(𝜇0(𝒙) − 𝑦)2

2𝜎02(𝒙)
V 

Where 𝜇0(𝒙)  represents the mean of 𝑘 th kernel, the 𝑘 th 
variance described by 𝜎0(𝒙).  
 

 
3. Mathematical two-stage Stochastic Optimization 

Mathematical two-stage stochastic Optimization is 
generally used as a conventional algorithm to perform 
stochastic optimization [11].   The objective function is 
defined as: 

𝑀𝑎𝑥𝑚𝑖𝑧𝑒	*𝑝(𝑠3".(|𝑎" , 𝑠")𝑉(𝑠3".()
3

	

where 𝑝 is transition probability from 𝑠" to 𝑠".( as a result of 
action 𝑎". 𝑉(𝑠) represent the value at the state 𝑠 ∈ 𝑆. The 
state 𝑠 defined as   

𝑠& = \𝑐
&

𝑟&
_ = `floor d

𝑖
11e

𝑖	𝑚𝑜𝑑	11
h 

 
III. American Football for IRL 

1. The rules of American football 

American football is one of the most popular sports in 
United States. As opposed to Soccer and Basketball in which 
the time flows continuously, American Football is 
independent for each play. Between each play, coach instructs 
11 players in the field on how and what play would proceed 
for the next game. The decision making during this interval 
plays vital role and has direct effect on final scores.  

Offense side has opportunity to play 4 times each sequence, 
they must advance 10 yards in these plays. Generally, the 4th 
play is used to recover their own position, thereby the offence 
team try to advance 10 yards in 3 plays as much as possible. 
If offence team advance 10 yards, they could get a new 
opportunity to play. In consequence, they aim to advance the 
ball to the goal line at the end of field. Figure 1 shows several 
examples of how the offence side advances. The first example 
(top) illustrating a success scenario to advance 10 yards in 3 
plays. The middle on is failure scenario to advance 10 yards. 
As a result, offense team use the next play to recover their 
position and the opposite team will attack. The bottom is also 
a failure example to advance. In this case, defensive team steal 
the ball and that team will attack in the next play. 

 

 
Figure 1: Examples of offense advance.  

  

As a result, each play has different features and strategies for 
each team, which is correctly determined by the movement 11 
players. However, plays can be categorized according to their 
features. Representing categories mainly includes pass play or 
run play. Pass play is the throw the ball from player to player, 
it has a low probability of success and high risk of turnover by 
the opponent team but has a chance to advance longer distance. 
In contrast, though run play is low risk of turnover and is 
difficult to advance long distance. The decision strategies 
involved in American football is primarily focused on how to 
well select and balance the two types of plays.  
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2. A Markov Model for American Football 

In this section, we will describe how to map the American 
Football game into the stochastic IRL scheme. The Markov 
Decision Process (MDP) [12] is defined by a set of states 𝑆, 
and set of actions 𝐴 , and transition functions 𝑇: 𝑆 × 𝐴 →
𝑃𝐷(𝑆) , where 𝑃𝐷  represents the set of probability 
distributions over finite set of state 𝑆. For an agent, there is the 
reward function 𝑅: 𝑆 × 𝐴 → ℝ, and have the discount factor 
0 < 𝛾 < 1 that discount the value of the state over time.  

In this work we define the states based on the field of 
American football as shown in Table 1. Each state has 3 
substates, therefore the number of state combination is 34 =
27 states. 5 kinds of action are considered in this work: guard, 
tackle, end, short, deep, which is categorized according to the 
features of plays. Run plays are guard, tackle, and end, pass 
plays are short and deep. 

 
Table1. States of MDP 

State Detail 
Field position:  

Position of the field that play start. 
100 yards line means the goal to get point. 

Red: 0~20yds 
Yellow: 20~80yds 
Blue: 80~100yds 

Down:  
How many times of out of 3 

1st down 
2nd down 
3rd down 

Distance:  
How long distance to advance 10 yds 

Long: 7yd~ 
Middle: 4~6yd 
Short: ~3yd 

 

3. Stochastic IRL for American Football 

To tackle the problem of stochastic transition, we apply 
MDN to estimate the probability distribution of next state. 
Given the input of state and action, MDN learn the probability 
distribution of the gainable distance each situation. The 
probability values are given for each predicted gainable 
distance which we integer-discretized it from 0 to 10. In IRL,  

Algorithm 1 Stochastic Max-Ent IRL algorithm 
 
Estimate transition probability 𝑇 from MDN 
Initialize reward function parameter 𝜃  
Initialize state function 𝐹(s) 
Calcurate expert visiting frequency 𝜇!	from data  
For episode = 1 to N do 
 1. Calculate reward function, obtain 𝑅(𝑠) = 𝜃 ∙ 𝐹(s)  
 2. Estimate maximum-likelihood policy 𝜋∗ from 𝑅(𝑠)  

 

3. Execute action 𝑎	~𝜋∗ 
The next state is estimated from 𝑇 of MDN result 
Estimate visiting frequency 𝜇	 

 
4. Calculate the defference of visiting frequency  

𝛥𝜇 = 	𝜇! − 	𝜇 
 5. 𝜃! = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑟𝑎𝑡𝑒 ∙ 	𝛥𝜇 
 6. Update 𝜃 ← 𝜃′ 
end for 

the value used as transition probability 𝑇  to learn reward 
function. A pseudo-code of Stochastic Max-Ent IRL is given 
in Algorithm 1. 

IV. Experiments 
1. Stochastic IRL 

At first, we estimate transition probability 𝑇 using MDN from 
expert data. The input is states and action at the time 𝑡. MDN 
learns distribution of advanced distance under each 
combination of state and action. The learnt transition 
probability is embedded in IRL to learn visiting frequency. The 
result of MDN is used to estimate next state under the 
calculated policy from reward function. Due to the use MDN, 
the agent is able to explore the policy even under the stochastic 
situation.  

As a simple example, we set all expert action to “end”. The 
result of the difference in visiting frequency between expert 
and leaning agent shows Figure 3 as contour.  Left side shows 
the visiting frequency from the expert demonstration while the 
right side shows the ones from the learnt agent. y axis 
represents the advanced yards accumulation. The figure shows 
that the agent is able to learn the reward function evidenced by 
a similar visiting trajectory mapping between the demonstrator 
and the learning agent. Upper left area in both figures represent 
the state of 1st down and 10 of distance that the start of the 
beginning of offense play in most games. Lower left area in 
both figures show the state after 3rd down, which means that 
visiting frequency is high because the goal is to advance 10 
yards after 3rd down.  

 

2. Mathematical Optimization for American Football 

In Mathematical Optimization, we defined 𝑉(𝑠(56 ) = 1, 
that represents the value that agent advanced 10 yards at the 
end of the 3rd play. We calculated tha value in all states and 
estimated the optimal action. In executing the calculation, we 
apply the transition probability from NFL event data as shown 
in Figure 3. The x label of yard gained represents the 
probability of advance to each yard from 0 yard to 10 yards 
after executing each action regardless of states. The 
probability is calculated from NFL data. If the really gained 
yard is minus, it is regarded as 0, and if the really gained yard 
is 10 or more, it is regarded as 10. This is attribute to the goal 
that is advanced by setting 10 yards or more.  

The result of two-stage stochastic optimization  is shown 
Figure 4. t means the number of plays of the 3 times. State 
means the remained distance to 10 yards. For example, in 1st 

Figure 3. Contour lines of visit frequency in state space. 
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down and 10 yards of distance, we index the the matrix 
element as (state=0,t=1).  Action has 5 types (e.g., guard, 
tackle, end, short, deep), and in each state, the best action 
calculated is highlighted. Top row (e.g., 6men, 7men, 8men, 
All) means the number of defense player in the tackle box. 
The more player in the tackle box, the better to defeat run play 
(e.g., guard, tackle, end). “All” is that considers all defensive 
pattern. For instance, in “6men” defense, 1st down, and 10 of 
distance, we confirm the matrix of 6men, state=0,t=1, which 
suggests that it is better to choose “short” play.  We calculated 
for typical defense tactics and all tactics, that represent top 
row (e.g., 6men, 7men). The column of “All” is the result of 
optimizing regardless of defense tactics. As a whole, in short 
distance, the results suggests that it is better to choose run play 
(e.g., guard, tackle, end). The results are consistent with the 
perspective of domain knowledge. In case of evaluating by 
defense strategy, the smaller the number of players, the more 
choices the pass play. Generally, because the number of 
players is proportional to the tightness of defense for pass play,  
and if the number of players in tackle box is small, it is better 
to choose run play. Thus, the result is close to domain 
knowledge. However, there is a problem of flexibility, 
because the policy are greedy in the sense that only one best 
action is presented from the mathematical optimization. In 
real game, even under the same state, which play the coach 
decide shows a lot of uncertainties and are heavily dependent 
on ad-hoc condition and situtaion during each play such as  
scores, player condition and previous tactics.   

 

 
Figure 4: The result of optimal action each state based on 
mathematical optimization.  

 

V. Conclusion 
In this work, we proposed a method to use IRL for 

American football as an example of under the stochastic 
uncertainly situation. The results show that the agent is able to 
learn the reward function evidenced by a similar trajectory 
mapping between the demonstrator and the learning agent. The 
mathematical optimization shows also ability to generate 
reasonable strategies under specified condition. However, a 
reliable experiment using MDN are not yet for both approaches 
thus generation ability to deal with realistic uncertain is poor 
for both approaches and is an undergoing subject.  Meanwhile, 
a Bayesian IRL instead of Max-Ent IRL is also under 
investigation for this purpose. We will describe the latest 
progress and result regarding these issues at workshop. 
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