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Abstract—The ability to understand what humans are doing is 

crucial for any intelligent system to autonomously support 

human daily activities.  Technologies to enable such ability, 

however, are still undeveloped due to the many challenges in 

human activity analysis.  Among them are the difficulties in 

extracting human poses and motions from raw sensor data, either 

recorded from visual sensor or wearable sensor and the need to 

recognize activities not seen before using unsupervised learning.  

Furthermore, human activity analysis usually requires expensive 

sensors or sensing environment.  With the availability of low-cost 

RGBD (RGB-depth) sensor, the new form of data can provide 

human posture data with high degree of confidence.  In this 

paper, we present our approach to extract features directly from 

such data (joint positions) based on human range of movement 

and the results of tests performed to check their effectiveness to 

distinguish sixteen (16) example activities are reported.  Simple 

unsupervised learning, K-means clustering was used to evaluate 

the effectiveness of the features.  The results indicate that the 

features based on range of movement significantly improved 

clustering performance. 

Keywords—human activity detection; human activity discovery; 

unsupervised learning; clustering; feature extraction; RGBD 

sensor 

I.  INTRODUCTION 

In any system designed to support human daily activities, 
be it a smart living environment or assistant robot, 
understanding of human activities is a fundamental ability.  
Human activity analysis requires accurate capture of human 
postures and motions.  Two major approaches to capture 
human poses and motions are uses of vision sensors and 
wearable devices.  Wearable devices are often seen as obtrusive 
and inconvenient, while vision sensors post the challenges of 
solving computer vision problems.  Solving the problem of 
extracting human poses reliably from the sensor data has been 
one of the major challenges in human activity analysis.  
Recently, the availability of low-cost RGBD (RGB-Depth) 
sensor has enabled accurate capture of human poses and has 
allowed researchers in human activity analysis to take a big 
leap to focus on analysis of the available postures and motions 
data.  Features are extracted from the RGBD data and learning 
algorithms are applied to learn and recognize different 
activities. 

In this paper, we present our work to identify a set of 
features that can be used to distinguish between different 

activities performed by human.  Features have been extracted 
from the pose information obtained directly from the 
application programming interface (API) of an RGBD sensor.  
The approach aims to ensure that the set of features will 
comprise necessary information to distinguish between all 
possible activities that a human can possibly perform.  While it 
is difficult to model human activities due to its wide variety 
and complexity, human movements are constrained by the 
range of movement.  Feature extraction for the purpose of 
human activity analysis will benefit from this knowledge.  We 
believe that given a correct set of features, an intelligent system 
can distinguish between different activities, and that it is 
sufficient for intelligent system to be able to distinguish the 
different activities.  Recognition of activities will be achieved 
through interrogating human or other intelligent systems.  This 
is similar to the way children learn about adult’s activities.  
They could distinguish the different activities and ask about 
what they are.  With this approach, the inputs to the learning 
system are unlabeled and unsupervised learning can be used.  
This is suitable in the natural setting of human living 
environment where intelligent systems can capture infinite data 
of human activities; however, the data will be unlabeled.  The 
use of unsupervised learning offers the potential for automatic 
human activity discovery whereby an intelligent system can 
discover new activities by itself. 

The remaining of this paper is organized as follows: Section 
II explains the difference between the work presented in this 
paper and other related works; Section III describes the 
approach used in our work to extract features based on human 
range of movements; Section IV describes the data used in the 
experiment and the tests carried out; Section V discusses the 
results obtained from the investigation; finally Section VI 
summarizes the findings from the experiment. 

II. RELATED WORKS 

Fundamentally human activity analysis is about recognizing 
the activity being performed from the postures and movements 
of a person.   The actions or movements of the people are 
captured either with sensors attached to the person or vision 
sensors.  In human activity analysis, vision-based solutions 
while challenging are preferred due to their unobtrusiveness 
and rich amount of information from visual data.  However, 
traditional computer vision problems have been haunted by the 
challenges to perceive three-dimensional information from 
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two-dimensional images, notably illumination changes and 
foreground extraction. Aggarwal and Ryoo [5] provide detailed 
overview of various state-of-the-art research works on human 
activity recognition.  It can be seen that significant efforts have 
been spent on accurately capture human motion (computer 
vision problem) and recognizing the activity from the motion 
(modeling and learning problems).  In general, statistical 
modeling algorithms are developed that match motion 
sequences by explicitly modeling the probability distribution of 
an activity.  Researchers have used several probability-based 
algorithms to build activity models.  The hidden Markov model 
(HMM) and the conditional random field (CRF) are among the 
most popular modeling techniques [3]. 

Alternative methods to extract three-dimensional 
information from visual images have been explored such as the 
use of time-of-flight (ToF) camera [1] to recognize activities 
[6].  However, it was only since two years ago that a low-cost 
RGBD sensor, such as the Microsoft Kinect became easily 
available.  Sung et al [4] used the Microsoft Kinect to detect 
human activities. They continued the approach of supervised 
learning, in which they first extract features from joint 
positions, orientations and hand movements based on the 
estimated human skeleton from the Microsoft Kinect and 
develop model from the labeled instances.  They trained a 
maximum-entropy Markov model (MEMM) with hierarchical 
structure to learn models of twelve different activities. 

The works described so far were based on supervised 
learning where labeled examples were provided to the learning 
algorithm.  However, in long term, to enable intelligent systems 
to autonomously learn new activities, they will be required to 
deal with unlabeled data.  For this reason, there have been 
increasing interest to investigate human activity discovery 
using unsupervised learning.  Huynh et al [8] used clustering to 
generate a vocabulary of labels from sensor data, which are 
then used for pattern extraction using topic models to recognize 
daily routines.  They used data from custom made wearable 
sensors.  Stikic et al [7] applied two weakly supervised 
methods to discover activities from two published dataset 
obtained from wearable sensors. 

The emphasis in the above described works have been on 
the learning algorithm, and there have been very few reported 
works based on data that can be obtained from the latest RGBD 
sensor.  We investigate the existence of a feature set that can 
reliably distinguish human postures and motions.  We extracted 
an exhaustive set of features from the estimated human 
skeleton from RGBD sensor API.  The features were operated 
to select an optimal set.  We believe that given an effective set 
of features, simple clustering algorithm can be used to 
distinguish different activities. 

III. FEATURE EXTRACTION & LEARNING 

For an intelligent system to learn or extract information 
from a given set of features, the quality of the features is 
equally, if not more, important than the learning algorithm.  
The features should ideally contain relevant data suitable for 
the selected learning algorithm to learn the desired information. 

A. Human Range of Movement 

While it is difficult to model human activities due to its 
wide variety and complexity, human movements are 
constrained by the range of movement.  Studies in kinematics 
of human motion [2][9] have identified possible movements 
around human joints including flexion, extension, lateral 
flexion, rotation of spinal column (the body movements); 
flexion, extension, abduction, adduction of shoulder joint (the 
arm movements); flexion, extension of elbow joint (the forearm 
movements); flexion, extension of knee joint (the leg 
movements); flexion, extension, adduction of hip joints (the 
thigh movements).  Fig. 1 provides some illustrations of human 
range of movement.  In this paper, these angular movements 
have been used as features for human activity detection.  As a 
side effect, the advantage of using joint angles is that they are 
scale independent, i.e. the size of the person does not normally 
affect range of movements. 

B. Features 

Feature extraction in the context of this paper is not about 
image processing.  The raw data were coordinates of 15 joints 
in human skeleton as shown in Fig. 2.  These coordinates were 
determined by the OpenNI [10] API from the images (frames) 
captured from Microsoft Kinect RGBD sensor.  It is the 
availability of such data that the work reported in this paper 
concentrated in extracting features from this form of data. 

A few assumptions have been made when considering the 
feature extraction: 

1. Sensor (camera) can be from any angle, however 
remains stationary during the whole activity duration 
(2 seconds); 

2. Coordinates of the 15 joint positions are available 
reliably from sensor API; 

Three sets of features were extracted: (1) set of 2700 
features, (2) set of 2400 features and (3) set of 280 features.  
The set of 2700 features are simply the x, y, z coordinates of 
the 15 joint positions.  Each activity example was captured for 
  

 
Figure 1.  Illustrations of range of movement. 
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Figure 2.  Human skeleton composed from fifteen (15) joint. 

a window of 2 seconds at 30fps.  Therefore, each example 
activity has 3 coordinates (x, y, z) for 15 joints in 30 frames per  
second for 2 seconds giving a total of 3*15*30*2=2700 
features.  All coordinates were transformed to the local 
coordinate frame located at the torso joint in the first frame of 
each example.  By fixing the local coordinate frame in the first 
frame, instead of each frame, the information of translational 
movement, i.e. the person is not stationary at one location, can 
be retained.  In this set of features, pose or shape information 
are assumed in all coordinates and temporal information are 
assumed across the 60 frames. 

The set of 2400 features attempts to provide clearer picture 
of the human pose as compared to that in the set of 2700 
features.  Here, 40 features were extracted based on human 
range of movement as described in Section III.A and a few 
other pose and interaction related features.  For each pose, i.e. 
in each frame, the following features were extracted from the 
coordinates of the joints: x, y, z coordinates of first frame, i.e. 
initial pose and position (3 features); the normalized (to 
shoulder width) distance from shoulder to foot at both sides (2 
features); angles describing body flexion and turn (4 features); 
angles describing arms stretch (4 features); angles describing 
arms and legs bend (4 features); angles describing leg stretch (4 
angles); normalized distance from hands to various interaction 
points on body (19 features).  With 40 features per frame, the 
total number of features in this set was 40*60=2400 features 
per example activity.  Many human activities involve the hand 
interacting with different parts of the body.  It is therefore 
desirable to use such features to detect certain activity, e.g. 
drinking will have hand close to the head.  In this set of 
features, the temporal information is assumed across the 60 
frames.   

The set of 280 features attempts to provide clearer picture 
of temporal information or movement.  It did not sample 
frames from the 60 frames, but instead determined temporal 
information from all 60 frames.  7 features were extracted for 
each of the 40 features from all 60 frames of each example 
activity: first value; last value; difference between first and last 
values; speed around middle frames; max speed; acceleration 
around middle frames; max acceleration.  The total number of 
features in this set was 7*40=280 features per example activity, 
which contain information from 60 frames. 

C. Unsupervised Learning 

K-means was used to evaluate if the feature extractions 
were able to make one set of features more distinguishable than 
the other set of features.  K-means clustering is one of the 
simplest unsupervised learning algorithms.  It looks for 
similarity among the examples in the dataset by using simple 
distance measurement.  Given the required number of clusters, 
K-means group the points (examples) in the dataset by 
minimizing the distance from each data point to a cluster center 
(centroid).  In the tests reported in this paper, K-means was 
used to find the centroids for the 16 activities given a subset of 
50 examples.  This was the learning phase.  Since K-means is 
unsupervised and does not work with the labels, the assignment 
of centroids to corresponding activities was done as a post-
process by assigning the centroid of each cluster to the activity 
with most membership in the cluster.  After the centroids were 
identified, we performed cross-validation with a separate subset 
of 30 examples.  Simple Euclidean distance measurement was 
used to assign each example to the nearest centroids found in 
learning phase.  The assignment was then checked against the 
known label of these examples, i.e. was example of activity A 
being assigned (detected as) to centroid of activity A (as found 
in learning phase).  This completed the cross-validation phase.  

IV. DATA & EXPERIMENT 

A. Data 

The data used in the experiment were the coordinates of 

the 15 joints as shown in Fig. 2.  Microsoft Kinect RGBD 

sensor was used to capture human activities.  OpenNI API was 

used to process the visual input from the Microsoft Kinect, 

detect and provide the 15 joints coordinates in each frame.  

Sixteen (16) activities as listed below were captured: 

1. Bowing 

2. Drinking with left hand (standing) 

3. Drinking with right hand (standing) 

4. Sitting 

5. Sitting down 

6. Standing 

7. Standing up 

8. Talking on phone with left hand (standing) 

9. Talking on phone with right hand (standing) 

10. Walking 

11. Wave ‘bye’ with left hand (standing) 

12. Wave ‘bye’ with right hand (standing) 

13. Wave ‘come’ with left hand (standing) 

14. Wave ‘come’ with right hand (standing) 

15. Wave ‘go away’ with left hand (standing) 

16. Wave ‘go away’ with right hand (standing) 

Each activity example has a duration of 2 seconds.  A 

number of the above activities are in common interest of 

human activity analysis researches, and a number of them are 

meant to be confusing, e.g. drinking with left hand (2) and 

talking on phone with left hand (8) are close to each other with 

subject’s left hand close to his head.  At the moment, the data 

have been recorded for one subject only.   
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Around 100 examples were recorded for each activities, 

however for the experiments reported in this paper, 80 

examples from each activity were used.  Three set of features 

were extractred from these examples as described in Section 

III.B.  Lets call them set of 2700, set of 2400 and set of 280 

features, and we have 80 examples (dataset) with each set of 

features. 

B. Experiment 

K-means clustering was performed on each set of features 
for the first 50 examples during the learning phase.  Then, 
centroids from the learning phase were tested with the subset 
of the remaining 30 examples in the cross-validation phase, as 
described in Section III.C.  Three rounds of the above tests 
were conducted.  In each round, a confusion matrix was 
produced.  The average of the confusion matrices from the 
three rounds in each phase was used to calculate the precision, 
recall and F0.5 score.  Initial test runs were performed for 
different number of clusters, K, to get an impression of 
potential improvement especially during cross-validation.  
K=32 appeared to be a reasonable value with good 
performance while not having many unoccupied clusters 
during the cross-validation.  However, ideally we want K=16.  
Results for both K=16 and K=32 are discussed in next section. 

V. RESULTS & DISCUSSION 

Tables I to IV present the precision, recall and F0.5 score for 
some of the tests performed.  All results are average of three 
runs of K-means clustering.  The results are grouped for the 
different set of features described in Section III.B.  Fig. 3 and 
Fig. 4 give the summary of the performance in learning and 
cross-validation phases.  Fig. 5 and Fig. 6 present the 
confusion matrices for some of the tests performed.  In each 
confusion matrix, each row is an actual activity (actual class), 
while each column is the cluster (predicted class) assigned to 
the respective activity, e.g. column 1 is the cluster of activity 
(1).  The corresponding activity to each number is as given in 
Section IV.A.  For compactness, the numbers in the confusion 
matrices have been transformed to gray scale with completely 
black representing 1 while completely white representing 0.  As 
a reference, the gray scale color bar is given in Fig. 5. 

Fig. 3 shows the summary of performance in learning 
phase, i.e. with the subset of 50 examples, for the three sets of  
  

 

Figure 3.  Summary of learning performance for three sets of features. 

TABLE I.  F0.5 SCORE FOR LEARNING WITH DIFFERENT PARAMETERS 

No. of features: 2700 2400 280 

Activity                  K: 16 32 16 32 16 32 

Bowing 78.1 88.3 73.4 95.9 40.8 99.6 

Drinking with left hand 86.4 87.5 60.8 82.6 74.6 69.7 

Drinking with right hand 35.8 60.8 78.6 100 38 85 

Sitting 80 85.3 69.2 70.3 90.4 99.1 

Sitting down 64.5 83.5 79 91.6 87.7 96.8 

Standing 72.9 93.4 65.3 74. 33.3 84.3 

Standing up 58 74 77.6 78.4 99.6 97 

Talking on phone with 

left hand 48.2 78.2 40.1 71 64.2 65.4 

Talking on phone with 

right hand 48.2 85.9 100 100 0 91.5 

Walking 61 96.2 75.2 86 53.1 81.1 

Wave ‘bye’ with left 

hand 41.7 86.5 61.4 92.5 62.4 82 

Wave ‘bye’ with right 

hand 51.7 70.5 87.1 97.9 0 88.9 

Wave ‘come’ with left 

hand 65.6 81.3 66.4 98 96.2 94.7 

Wave ‘come’ with right 

hand 44.2 90.4 97.7 97.9 98.3 98 

Wave ‘go away’ with 

left hand 68.3 72.7 67.5 97.3 66 92.8 

Wave ‘go away’ with 

right hand 35.7 52.1 99.3 99.6 96.1 95 

Average: 58.8 80.4 74.9 89.6 62.5 88.8 

 

features.  Table I shows the F0.5 score achieved during the 
learning phase.  Increasing the number of clusters from 16 to 
32 significantly improved the clustering accuracy in all set of 
features.  In general, the set of 2400 features performed better 
than the set of 2700 features, while the set of 280 features did 
not help to improve performance when compared to the set of 
2400 features.   However, at almost ten times less number of 
features, the set of 280 features performed better than the set of 
2700 features.  The extraction of features based on range of 
movement has improved the clustering performance.  However, 
four of the activities were more confused with the extracted 
features as compared to the set of 2700 features: drinking with 
left hand (2), standing (6), talking with left hand (8) and 
walking (10).  Looking at the confusion matrix for the result 
from the set of 2400 features at K=32 given in Fig. 5, activity 
(2) was confused with activity (8) while activity (6) was 
confused with activity (10).  The extracted features lost the 
necessary information that distinguishes these two pairs of 
activity. 

Fig. 4 shows the summary of the performance in cross- 
 

 

Figure 4.  Summary of cross-validation performance for three sets of 
features. 
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TABLE II.  PRECISION FOR CROSS-VALIDATION WITH DIFFERENT 

PARAMETERS 

No. of features: 2700 2400 280 

Activity                  K: 16 32 16 32 16 32 

Bowing 45.3 83.1 57.8 89.2 37.1 100 

Drinking with left hand 100 73.1 46.9 91.8 61.3 54.5 

Drinking with right hand 10.7 18.9 71.4 91.6 31.8 66.4 

Sitting 100 100 66.7 61.6 100 100 

Sitting down 45.3 75 73 100 100 100 

Standing 56.4 86.3 61.5 61.6 32.6 69.6 

Standing up 61.6 66.9 100 100 100 100 

Talking on phone with 

left hand 

83.3 57.8 100 7.2 53.6 52.6 

Talking on phone with 

right hand 

39.7 79.5 100 96.5 0 85.1 

Walking 67.3 96.7 76.9 84.9 49.5 92.5 

Wave ‘bye’ with left 

hand 

38.9 95.3 75 85.7 59.6 75.6 

Wave ‘bye’ with right 

hand 

10.4 20.9 100 100 0 74 

Wave ‘come’ with left 

hand 

53.6 51.1 55.9 79 83.5 82.8 

Wave ‘come’ with right 

hand 

42.9 65.1 75.6 78.9 80.7 81.3 

Wave ‘go away’ with 

left hand 

71.8 82.1 80 92.3 93.8 98.1 

Wave ‘go away’ with 

right hand 

0 0 100 100 100 95.6 

Average: 51.7 65.7 77.5 82.5 61.5 83 

 

validation phase, i.e. with the subset of 30 examples, for the 
three sets of features.  Table II, III and IV show the precision, 
recall and F0.5 score achieved during the cross-validation phase.  
The same trend of performance increase with feature extraction 
is observed.  The performances with 32 clusters (K=32) 
remained significantly better than those with 16 clusters 
(K=16) during the cross-validation.  The performance with the 
set of 2400 features remained superior compared to the other 
two set of features.  At K=32, the highest F0.5 score was 97.5%, 
while the lowest was 66.2%.  Fig. 6 shows the cross-validation 
confusion matrices for the results from three sets of features at 
K=32.  It is clear that the set of 2400 features was least 
confusing to the learning algorithm as its confusion matrix, 
given in Fig. 6(b), has the least off-diagonal elements.  Among 
those activities that were confused, the feature extracted in the 
set of 280 features appeared to make sitting (4) and standing 
(7) much less confused as compared to the other two sets of 
features. 

The results indicate the potential of tweaking the features to  

   

Figure 5.  Learning confusion matrix for 2400 features at K=32. 

enable simple clustering algorithm to distinguish between 
different activities.  Nevertheless, K-means clustering suffers 
from the problem of initialization and does not always find the 
global optimal solution.  The clustering performance of K-
means greatly depends on the initial centroids.  It is desirable to 
adapt a more robust clustering algorithm to evaluate the 
suitability of extracted features. 

TABLE III.  RECALL FOR CROSS-VALIDATION WITH DIFFERENT 

PARAMETERS 

No. of features: 2700 2400 280 

Activity                  K: 16 32 16 32 16 32 

Bowing 53.3 76.7 82.2 92.2 62.2 98.9 

Drinking with left hand 24.4 42.2 100 74.4 75.6 100 

Drinking with right hand 15.6 18.9 100 96.7 100 87.8 

Sitting 10 22.2 66.7 100 66.7 100 

Sitting down 32.2 96.7 90 88.9 66.7 98.9 

Standing 63.3 70 71.1 94.4 33.3 96.7 

Standing up 100 98.9 66.7 37.8 100 98.9 

Talking on phone with 

left hand 

61.1 82.2 4.44 86.7 50 11.1 

Talking on phone with 

right hand 

25.6 77.8 93.3 91.1 0 70 

Walking 38.9 64.4 55.6 68.9 51.1 68.9 

Wave ‘bye’ with left 

hand 

90 91.1 66.7 100 96.7 100 

Wave ‘bye’ with right 

hand 

20 30 66.7 100 0 85.6 

Wave ‘come’ with left 

hand 

65.6 98.9 90 87.8 78.9 80 

Wave ‘come’ with right 

hand 

63.3 91.1 100 100 97.8 96.7 

Wave ‘go away’ with 

left hand 

31.1 35.6 13.3 53.3 16.7 56.7 

Wave ‘go away’ with 

right hand 

0 0 63.3 67.8 66.7 47.8 

Average: 43.4 62.3 70.6 83.8 60.1 81.1 

 

TABLE IV.  F0.5 SCORE FOR CROSS-VALIDATION WITH DIFFERENT 

PARAMETERS 

No. of features: 2700 2400 280 

Activity                  K: 16 32 16 32 16 32 

Bowing 46.7 81.8 61.5 89.8 40.3 99.8 

Drinking with left hand 61.8 63.8 52.4 87.7 63.7 60 

Drinking with right hand 11.4 18.9 75.8 92.6 36.8 69.8 

Sitting 35.7 58.8 66.7 66.8 90.9 100 

Sitting down 41.9 78.5 75.8 97.6 90.9 99.8 

Standing 57.7 82.5 63.2 66.2 32.8 73.7 

Standing up 66.8 71.5 90.9 75.2 100 99.8 

Talking on phone with 

left hand 

77.7 61.5 18.9 78.9 52.8 30.1 

Talking on phone with 

right hand 

35.7 79.2 98.6 95.3 0 81.6 

Walking 58.7 87.9 71.4 81.2 49.8 86.6 

Wave ‘bye’ with left 

hand 

43.9 94.5 73.2 88.2 64.5 79.5 

Wave ‘bye’ with right 

hand 

11.5 22.3 90.9 100 0 76.1 

Wave ‘come’ with left 

hand 

55.7 56.6 60.4 80.6 82.6 82.2 

Wave ‘come’ with right 

hand 

45.8 69 79.5 82.4 83.7 84 

Wave ‘go away’ with 

left hand 

56.9 65 40 80.5 48.7 85.6 

Wave ‘go away’ with 

right hand 

0 0 89.6 91.3 90.9 79.6 

Average: 44.2 62 69.3 84.6 58 80.5 
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(a)    (b)    (c) 

Figure 6.  Cross-validation confusion matrix for (a) 2700, (b) 2400, (c) 280 features at K=32. 

 

VI. CONCLUSION 

This paper presented the approach to extract features from 
RGBD sensor data based on human range of movement.  The 
results from performing clustering on three sets of features 
indicated the features extracted based on human range of 
movement significantly improved clustering performance, as 
compared to direct use of joint coordinates.  For the set of 
features extracted based on human range of movement, an 
average F0.5 score of 89.6% was achieved in the learning phase 
and 84.6% was achieved in the cross-validation phase.  
However, some activities remained confused and further tweak 
of the feature set will be required.  In addition, K-means suffers 
from inconsistent performance highly dependent on its 
initialization outcome.  More robust unsupervised learning 
algorithm will be required to evaluate the effectiveness of the 
feature set. 

REFERENCES 

 
[1] A. Kolb, E. Barth, R. Koch, and R. Larsen, “Time-of-flight sensors in 

computer graphics,” in EUROGRAPHICS, 2009, pp. 119–134. [1] 

[2] B. Mackenzie, “(2004) Range of Movement (ROM) [WWW],” available 
from: http://www.brianmac.co.uk/musrom.htm [Accessed 29/6/2012]. 

[3] E. Kim, S. Helal, and D. Cook, “Human Activity Recognition and 
Pattern Discovery,” in Pervasive Computing, IEEE, January-March 
2010, vol.9, no.1, pp.48-53. [4] 

[4] J. Sung, C. Ponce, B. Selman, and A. Saxena, “Human Activity 
Detection from RGBD Images,” in Association for the Advancedment of 
Artificial Intelligence Workshop on Pattern, Activity and Intent 
Recognition (PAIR), 2011, pp. 47-55. [10] 

[5] J.K. Aggarwal, and M.S. Ryoo, “Human activity analysis: A review,” in 
ACM Comput. Surv. 43, 3, Article 16, April 2011. [8] 

[6] L.A. Schwarz, D. Mateus, V. Castaneda and N. Navab, “Manifold 
learning for tof-based human body tracking and activity recognition,” in 
British Machine Vision Conference (BMVC), Aug 2010, pp. 1–11. [9] 

[7] M. Stikic, D. Larlus, S. Ebert, and B. Schiele, “Weakly Supervised 
Recognition of Daily Life Activities with Wearbale Sensors,” in IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, No. 
12, December 2011, pp. 2521-2537. 

[8] T. Huynh, M. Fritz, and B. Schiele, “Discovery of Activity Patterns 
using Topic Models,” in UbiComp ’08 Proceedings of the 10th 
International Conference on Ubiquitous Computing, 2088, pp. 10-19. 

[9] V.M. Zatsiorsky, “Kinematics of Human Motion,” Human Kinectics, 
1998, ISBN: 0880116765. 

[10] http://www.openni.org. 

 

- 35 -




