
Test Methodology for Real-Time Operating System

Siaw Chen Lee, Soon Ee Ong
IC Design Engineering

Altera Corporation (M) Sdn Bhd
Bayan Lepas, Penang, 11900 MY

sclee@altera.com, seong@altera.com

Noohul Basheer Zain Ali
Dept. of Electrical and Electronics

Universiti Teknologi Petronas
Tronoh, Perak, 31750 MY

noohul.z@petronas.com.my

Abstract—There exist many varieties of Real-Time Operat-
ing System (RTOS) in the market, most of them are software
based while some are hardware based. During the selection of
RTOS, we often need to know the performance of RTOS to
ensure it meets the requirements of the real-time system we
are designing. Not all RTOS provides specification or data that
is useful for consideration or calculation. This paper proposed
a set test methodology for designer to quickly measure the
performance of a RTOS. The test methodology proposed in this
paper covering parameters that are practically useful for real-
time system designer to be used for RTOS selection judgment
or improvement. These parameters includes computing process
overhead, task level interrupt latency, intertask communication
& synchronization latency and performance jitter.

Keywords-Real-time Operating System; RTOS; Test Method-
ology

I. INTRODUCTION

One of the key factor that differentiate Real-Time Op-
erating system from general computing operating system is
the deterministic of response timing [2]. Real-time operating
system must have a deterministic response time (i.e. latency)
to ensure the quality of service [1]. Other than latency,
overhead spent by RTOS processes are also important. The
overhead should be kept minimum for less wastage of
computing power. The latency timing and overhead timing
should also been kept in small variance (i.e. jitter of latency
and overhead time) to maintain the time deterministic.

This paper describes the test methodology that can be
quickly and easily implemented in RTOS for measurement
of performance critical parameters, namely computing pro-
cess overhead, task level interrupt latency, intertask commu-
nication & synchronization latency and performance jitter.

The remaining sections of this paper are organized as
follows. Section II briefly introduces the related works in
RTOS measurement. It is followed by Section III that ex-
plains the test methodology. The described test methodology
is then implemented on a software based RTOS ,µC/OS-
II, and hardware based RTOS, SEOS, for demonstration at
Section IV. Finally, Section V concludes the paper.

II. RELATED WORKS

Tsoukarellas, Manthos A. and colleagues published a
systematic strategy for testing of real-time operating system

[4]. The test consist of black-box testing and white-box
testing. Flows on test cases creation for coverage on all
RTOS functions are presented, including task related testing
and semaphore related testing.

On the other hand, Wegener and groups also devel-
oped a classification-tree method for RTOS testing [5]. It
turns functional test case design into a process comprising
several structured and systematized parts to make it easy
to handle and documented. The classification-tree method
was improved version of category-partition method defined
by Ostrand and Balcer [6]. The basic idea is to partition
separately the input domain of the test object under differ-
ent aspects, assessed as relevant for the test, and then to
recombine the different partitions to form test cases.

To bring the test methodology further, Dino’s team
developed a language called TRIO for automated derivation
of functional test cases for real-time system [7]. This lan-
guage can be used on RTOS as well. The TRIO language
is an extension of classical first-order temporal logic with
respect to a current, implicit time instant. Unlike classical
temporal logic, TRIO allows the specifier to express strict
timing requirements by means of two basic operatorsFutr
and Pastwhich refer to time instants whose distance, in the
future or in the past, is specified precisely and quantitatively.

All works shown above defines RTOS testing in great
detail with extensive coverage. TRIO also provide a good
tool for automated testing. Despite of the completeness
in test coverage, all above mentioned test methodology
required extensive of time and effort to implement. For
the case of early RTOS assessment, system designer may
sometimes want a quick test on the RTOS performance. With
that as basis, system designer can then pin point the RTOS
that meets system requirements. Full test coverage will then
being implemented after the system development phase.

III. TEST METHODOLOGY

As mentioned in previous section, system designer may
sometimes want a quick test methodology to assess the
performance of RTOS to select or to confirm that the perfor-
mance meets system requirements. This paper identify four
critical parameters for RTOS performance testing. These
parameters are able to give the system designer a good

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186–5140
Volume 3, Number 1, pages 10–12, January 2014

- 10 -

Figure 1. Computing Task Loop

Figure 2. Task Level Interrupt Latency

pictures on the overall performance of the RTOS. With the
same data, system designer can also quickly determine if the
RTOS is meeting the requirements of the system. The four
parameters are computing process overhead, task level in-
terrupt latency, intertask communication & synchronization
latency and performance jitter.

A. Computing Process Overhead

Computing Process Overhead is the overhead time con-
sumed by RTOS on top of the actual computing process in
the system. In order to measure computing process overhead,
A task loop can be created with a fixed number of test tasks.
The length of benchmarking task should be in adequate
length of time. Standard benchmarking package such as
whetstone benchmarking or Dhrystone benchmarking are
recommended candidate to be the test tasks as it would
provide adequate exercise on the computing process with
reasonable amount of time. In this test, fixed iterations of
loop are executed, as illustrate in Figure 1. Actual process
time should be taken from the beginning of test task and the
end of the test task as the differential time, DT. This Total
time, T, taken to execute all the loops is also measured. The
computing process overhead can be calculated by comparing
the total time against the differential time, as shown in
formula 1.

Overhead = T − (DT ∗NumberofLoops) (1)

B. Task Level Interrupt Latency

Task Level Interrupt Latency is to measure the respon-
siveness of the task toward an interrupted event. In other
words, it measure the latency from the occur of event until

Figure 3. Intertask Communication & Synchronization Latency

the starting of processing in the correspondent task. For
this test, an external interrupt source is setup to trigger
an interrupt service routine randomly. The interrupt service
routine is coded to post a semaphore, in which will cause
context switch to switch to the task that handles this external
interrupt event. Upon receiving of the semaphore, the task
will force a GPIO pin to high. Time latency is measured at
the point when external interrupt get triggered to the point
when task trigger the said GPIO, as shows in the timing
diagram at Figure 2.

C. Intertask Communication & Synchronization Latency

Intertask Communication & Synchronization Latency
is the parameter to tells the latency between a task post-
ing a signal till the reception of another task. For this
test, two tasks are created whereby one task will post
a semaphore/message while the other task is pending
to receive the semaphore/message. Latency is measured
for time taken between the posting and receiving of the
semaphore/message as shows in the timing diagram at Figure
3.

D. Performance Data Jitter

With enough data set collected from the above three
parameters, the performance jitter can be computed by
calculating the variance of data using the equation 2. σ is
the jitter number, while n is the number of data set.

σ2 =

∑n
i=1(xi − µ)2

n
(2)

IV. TEST METHODOLOGY IMPLEMENTATION

A. Test Platform

Two RTOS was selected to conduct the performance
test to illustrate the implementation of the described test
methodology. The software based RTOS selected is µC/OS-
II [1] and hardware based RTOS selected is SEOS [3]. An
Altera Cyclone-II FPGA development board with NIOS-II
soft core processor, flash memory, SDRAM and I/O module
is used for test platform development. Avalon interconnect
bus is used as system interconnect. The test is separated
into two sections. First section measure the performance of
SEOS and second section replace SEOS with µC/OS-II.

- 11 -

Table I
PERFORMANCE COMPARISON RESULT

Measurement Computing Process Time (µs) Performance
Parameter SEOS µC/OS-II Different

Computing Time 13,405,265 19,608,805 31.64%
(loops)

Task Level 49.967 319.577 83.52%
Interrupt Latency

Inter-task Comm. 64.12 228.46 71.93%
and Sync. Latency

Table II
JITTER PERFORMANCE COMPARISON

Performance Jitter (%)
SEOS µC/OS-II

Computing Overhead 0.00014% 0.0086%
Task Level Interrupt Latency 1.590% 25.365%
Inter-task Comm.& Sync. Latency 0% 0.103%

B. Result

Table I denotes the comparison of the three measured
parameters. SEOS computing time is 31.6% less compares to
µC/OS-II which indicated that it has lower system overhead.
The task level latency of SEOS is of 83.5% lesser compares
to µC/OS-II. As for intertask communication and synchro-
nization latency, SEOS is 71.9% lower than µC/OS-II. The
performance jitter is also computed based on 20 sets of data
collected. A hardened RTOS is suppose to have performance
advantage over software based RTOS. The experiment is
consistent with the expected result.

V. CONCLUSION

This paper presented a test methodology for RTOS that
is able to allow the system designer to easily and quickly
obtained practically useful performance data of a RTOS.
This is particularly useful when system designer needs to
quickly assess the performance of a RTOS to decide on
RTOS selection or to determine if the RTOS is meeting
requirements.

REFERENCES

[1] J. Labrosse, MicroC/OS-II: The Real-Time Kernel. R&D
Books, Lawrence, KS, 1999.

[2] P. Laplante, S. Ovaska, Real-Time System Design and Analysis:
Tools for Practitioner. Wiley-IEEE Press, 2011.

[3] Ong, Soon Ee, Siaw Chen Lee, and Noohul Basheer Zain Ali,
”Hardware implemented real-time operating system.” Pro-
ceedings of the ACM/SIGDA international symposium on
Field programmable gate arrays. ACM, 2013.

[4] Tsoukarellas, Manthos A., Vasilis C. Gerogiannis, and Kostis
D. Economides, ”Systematically testing a real-time operating
system.” Micro, IEEE 15, no. 5 (1995): 50-60.

[5] Wegener, Joachim, et al, ”Systematic testing of real-time
systems.” 4th International Conference on Software Testing
Analysis and Review (EuroSTAR 96). 1996.

[6] Ostrand, T., and Balcer,M, ”The Category-PartitionMethod for
Specifying andGenerating Functional Tests.” Communica-
tions of the ACM (1988), 31 (6), pp. 676-686.

[7] Mandrioli, Dino, Sandro Morasca, and Angelo Morzenti,
”Generating test cases for real-time systems from logic speci-
fications.” ACM Transactions on Computer Systems (TOCS)
13.4 (1995): 365-398.

- 12 -

