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Abstract—We propose an implementation of an asynchronous
arbiter for Field Programmable Gate Array (FPGA) which can
reduce failures caused by metastability of RS flip-flop (RSFF).
We adopt a binary tree structure of 2-input arbiters, which is
called a tree arbiter. The tree arbiter has hierarchical structure
of 2-input arbiters, in which each 2-input arbiter selects one
of the two requests progressively. The tree arbiter can prevent
increase of latency and has also an advantage in throughput. The
2-input arbiter has glitch killer circuits in order to prevent the
failures caused by metastability of RSFF. However, it is impossible
to implement the glitch killer circuits into FPGA. Therefore,
we propose a method for preventing such failures applicable to
FPGA. We also analyze the metastability of RSFF implemented
with a crossed connection of logic blocks. Finally we generate a
circuit model from implemented FPGA in order to take place an
analysis by SPICE.

I. INTRODUCTION

In case that resources, such as a bus or a memory, are
shared by independent processing elements, conflicts about
accesses to a resource may occur. An asynchronous arbiter
(hereinafter referred to as an arbiter) establishes the order of
access to a shared resource among asynchronous requests from
processing elements[1]. Many methods have been proposed
for constructing arbiters. Most of them multiply inputs of the
arbiter by combining 2-input arbiters[2].

2-input arbiters have two stable states corresponding to the
choices of the inputs. If two requests arrive at an arbiter within
a short time, the output may oscillate or keep medium voltage
for uncertain time before the arbiter reaches the stable states.
These intermediate states are called metastable states and may
cause erroneous behaviors. To avoid the errors, a cascading
connection of glitch killer circuits inhibiting propagation of
the metastability is established at the output of RS flip-flop
(RSFF) in the 2-input arbiter[3].

Field Programmable Gate Array (FPGA) has been de-
veloped to implement a synchronous circuit. Recently, a
number of methods have been proposed for implementing
asynchronous circuits in FPGAs[4][5][6][7]. Since it is im-
possible to implement glitch killer circuits in FPGA, some
other approaches are required to avoid the errors caused by

metastability. However, there is no method for implement-
ing the prevention of metastability in FPGA. In addition, a
RSFF is implemented with a cross coupled logic blocks and
thus metastability may occur in the RSFF. There are many
studies for metastability analysis of Application Specific IC
(ASIC)[3][8][9][10]. However, metastability analysis of FPGA
does not exist, except for the analysis of D flip-flop (DFF) in
a logic block[11][12][13].

In this paper, we propose an implementation of an arbiter
composed of 2-input arbiters preventing errors caused by
metastability of RSFFs. We adopt a binary tree structure of
arbiters (called tree arbiter) which can prevent increase of
latency and has also an advantage in throughput[14]. The tree
arbiter has a hierarchical structure of 2-input arbiters and each
2-input arbiter selects one of the two requests progressively
in each stage. We also analyze the metastability of RSFF
implemented with a crossed coupled logic blocks. We derive a
circuit model from implemented FPGA and analyze the model
by SPICE.

In Section II, we present the hierarchical structure and
operation of tree arbiter. In Section III, we present the imple-
mentation of tree arbiter for FPGA preventing errors caused
by metastability. Section IV shows results of metastability
analysis of RSFF implemented for FPGA.

II. ASYNCHRONOUS TREE ARBITER

A. 2-input Arbiter

A 2-input arbiter, which is a basic component of a tree
arbiter, is constructed by using a RSFF. The 2-input arbiter
selects one request based on critical race in RSFF. However, in
the case that two requests arrive within a short time, a RSFF of
the arbiter could fall into a metastable state and its output keeps
medium voltage. Since such behaviors may cause errors in the
arbiter, a number of methods are developed to decrease the
metastability or to suppress propagation of the metastability.

A mutual exclusion element (ME) is one of the structures
for 2-input arbiters which can inhibit propagation of medium
voltage. The structure of ME is shown in Fig 1.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186–5140 
Volume 3, Number 1, pages 13–19, January 2014

- 13 -



R1

R2

A1

A2

Fig. 1. The structure of a mutual exclusion element.

R1, R2 are request signals and A1, A2 are their acknowl-
edgement signals. The dashed area which consist of four MOS
transistors is called a glitch killer circuit. The glitch killer
prevents propagation of medium voltage and is widely used
to prevent errors caused by the metastability.

If R1 and R2 are asserted in a long enough interval, then an
acknowledgement signal corresponding to the previous request
(if the request is R1(R2) then the acknowledgement is A1(A2))
is asserted. On the other hands, if the two requests are asserted
within a short time, the RSFF in the ME reaches a metastable
state and outputs of its NAND gates keep medium voltage.
While the RSFF remain in a metastable state, two p-MOSFETs
and two n-MOSFETs turn OFF and ON, respectively. Then A1
and A2 are both disasserted and the acknowledge operation
is postponed. When the RSFF leaves a metastable state,
their outputs become stable and the acknowledge operation
is carried out. Thus the latency increases by increasing of the
propagation delay caused by the metastability.

B. Multi-input Tree Arbiter

A tree arbiter is a competitive arbiter which has a binary
tree structure of 2-input arbiters. Fig 2 shows the structure of a
tree arbiter. REQi and ACKi (1 ≤ i ≤ N ) represent request and
acknowledgement signals, respectively. A tree module (TM) is
obtained by adding to the ME a controller operating a request
to upper stage and an acknowledgement from upper stage in
the tree structure. Fig 3 shows the structure of a tree module.

The AND gate labeled C is the Muller C-element, which is
a commonly used asynchronous logic component. The output
of the C-element reflects its inputs if the two inputs have a
same logical value. Otherwise the output remains the value
in the previous state. OREQ and OACK represent request to
upper TM and acknowledgement from upper TM, respectively.

First, inputted request signals REQi (1 ≤ i ≤ N ) are
selected by TMs in bottom stage. The arbitration is performed
by ME of each TM. After the arbitration is completed, the
TM sends a request to upper TM by asserting OREQ. If
the RSFF in the ME falls into a metastable state, the ME
waits for metastability to resolve. The TM in next stage
performs the arbitration process in the same way. Thus the
arbitration processes are performed by the TMs in log2 N − 1
stages hierarchically. The ME in top stage selects one of the
requests from lower TMs and asserts an acknowledgement
signal corresponding to the request. If the input signal OACK
is asserted, assuming IREQ1 is selected, output of the topside
C-element is asserted and IACK1 is also asserted. Then OACK
of the corresponding TM in lower stage is asserted. Thus
the acknowledgement processes are performed by the TMs
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Fig. 2. The structure of a tree arbiter.
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Fig. 3. The structure of a tree module.

in log2 N − 1 stages hierarchically. When the TM in bottom
stage completes the acknowledgement, ACKj is asserted and
the request of the corresponding device is acknowledged. Note
that C-elements of TMs in each stage keep the logic values
representing selected requests.

After resources are occupied by the selected device, request
signal REQj is disasserted and OREQ of the TM in bottom
stage is also disasserted. If another request signal has been
asserted, then the ME selects this request immediately. Since
the output of the ME is gated by C-elements, OREQ is ensured
to be disasserted. OREQs of TMs in the succeeding stages are
disasserted in the same way, and then the output of ME in
top stage is disasserted. By disasserting the output of the ME,
OACKs of TMs in downward stages are disasserted and finally
ACKj is disasserted.
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III. IMPLEMENTATION OF ASYNCHRONOUS TREE
ARBITER FOR FPGA

A. Improvement of tree module considering metastability

Since the tree arbiter carries out the arbitration in each
stage hierarchically, metastability which occurs in each stage
cannot be avoided. As mensioned in Section II, the effect of
metastability is limited to increase of the propagation delay
on TM and erroneous behavior does not happen. However, the
glitch killer circuit shown in Fig. 1 cannot be implemented on
FPGA. Thus the output of ME may remain medium voltage
and it propagates to OREQ immediately. Such metastability
may cause various erroneous behaviors. For example, if the
metastable state remains until OACK is asserted, then both
IACK1 and IACK2 can be asserted and two requests are
acknowledged simultaneously. In such case, both C-elements
store 1 and these requests are gated by the AND-gates, and
then OREQ is disasserted. This will disassert OACK and
interrupt the occupancy of resource. In this chapter, we show a
method to decrease this type of errors caused by metastability.

As is clear from the logic of OREQ in Fig. 3, the presence
of conflict on TM in each stage depends on only the presence
of requests from the former stage, and not on the result of
acknowledgement. Thus OREQ can be asserted at the time that
some requests arrive at the TM. Since OREQ is not generated
from the outputs of ME directly, ME has a low probability of
propagating the metastability. In addition, even if TM falls into
a metastable state, subsequent TMs can continue the arbitration
process before the TM reaches a stable state and the delay
caused by the metastability can be masked.
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Fig. 4. The structure of a tree module with early generation of OREQ.

Fig. 4 shows the structure of TM where OREQ can be
early generated. We refer to the TMs in Fig. 3 and Fig. 4
as TMorg and TMnew, respectively. We also refer to the tree
arbiters based on TMorg and TMnew as TArborg and TArbnew.
Note that TArbnew has the same structure as TArborg in the
relation of TMs shown in Fig. 2 and TArbnew can be obtained
by replacing all the TMs in Fig. 2 with the TMnew.

In TMnew, requests IREQ1 and IREQ2 are inputted into
ME and are also used to generate OREQ. Thus even if the
metastability is caused in ME, the tree arbiter continues its
arbitration process. When OACK is asserted, one of inputs of
both C-elements is also asserted. If the metastability in ME
has finished, another input of one C-element is asserted and
corresponding acknowledgement IACK1 or IACK2 is asserted.
Otherwise, faults may happen. However, faults caused by
propagation of the metastability can be avoided.

The tree arbiter with TMnew can continue the arbitration
process if former TMs falls into a metastable state. Therefore
even if a series of TMs falls into metastable state, the delay
caused by the metastability is masked by the delay occurs in
the subsequent TM. For this reason, the latency of TArbnew
is affected by only the delay occurs in the last ME. Thus the
peak latencies Lorg and Lnew of n-input tree arbiter TArborg
and TArbnew are obtained as follows:

Lorg = (tme + dReq + dAck) · (log(n)− 1) + tme. (1)
Lnew = (dReq + dAck) · (log(n)− 1) + tme. (2)

Here, tme is duration of the metastability, dReq is sum of delays
on AND and OR gates in Fig. 3, and dAck is delay on the C-
element.

B. Result of Implementation for FPGA

We designed 4-input tree arbiter for behavioral level using
Xilinx ISE 9.2. In this paper we adopt Xilinx Spartan-3 as
a target device, which is SRAM-based FPGA with an island
structure shown in Fig. 5.SM SMLBSM SMCB CB SMLB SM LB SM

SMLBSM SMCB LB SM LB SMLBSM SMCB CB LB SM LB SMIO
CB
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Fig. 5. SRAM-based FPGA with an island structure.

A logic block (LB) is a programmable circuit which
implements a combinational circuit as a logical element and an
input-output block (IO) is an interface between LB and I/O-pin
of the FPGA. LB and LB or LB and IO is connected by wires, a
connection block (CB) and a switch matrix (SM). CB connects
LB or IO with wires programmably and SM connects vertical
wires and horizontal wires programmably. LB has an original
architecture for each FPGA vender. In Spartan-3 FPGA, LB
consists of four slices and these slices can be programmed
individually. Fig. 6 shows an outline of a structure of a slice
in Spartan-3.

A slice has two lines G and F . Each line has one 4-
input look up table (LUT) and one D flip-flop (DFF). Gi,
Fi (i = 1 . . . 4) are inputs and X , Y are outputs of the slice,
respectively. Boxes in the LUT represent SRAM cells. These
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Fig. 6. Outline of a structure of a slice.

cells are set or reset according to a truth table to implement a
combinational circuit. On the other hand, although a sequential
circuit can be implemented using DFF, in this implementation
we use RSFF by cross coupled LUTs instead of the DFF.

We provided a schematic design to implement the tree
arbiter. The logical structures of ME and TM are the same
as shown in Fig. 1 and 4. However, as stated above, the glitch
killer circuit of ME cannot be implemented on FPGA. Thus
we implemented the ME as a 2-input RSFF by omitting the
glitch killer circuits. Fig. 7 shows the implementation of the
4-input tree arbiter on FPGA.

The MEs in TMs are implemented on G of Slice1, F of
Slice2, F of Slice6 and F of Slice7 similar to the structure
shown in Fig. 1. On the other hand, the ME in the top stage is
implemented on G of Slice3, G of Slice4, F of Slice1 and
G of Slice6. Although this implementation is not the same
as Fig. 1, the logical functions are same. The C-elements are
implemented F of Slice4, F of Slice3 and G,F of Slice5.

To check the operation of the implemented 4-input tree
arbiter, we assigned test patterns which assert fou requests
exhaustively and observed waveforms in the case that the
metastability occurs. Fig. 8 shows the waveforms of request
and acknowledgement signals.

The result shows that the arbitrations are carried out
exclusively in some of test patterns with the metastability.
Thus the improvement of a tree arbiter stated in Section III-A
can prevent the effect of the metastability. However, for some
cases (indicated by white arrows) multiple acknowledgements
are asserted simultaneously. This seems to be because long
duration of the metastability keeps the TM in a metastable
state until OACK is asserted and two or more requests are
acknowledged simultaneously.

Fig. 8. Waveforms of input and output signals of the 4-input tree arbiter.

IV. METASTABILITY ANALYSIS OF RSFF IMPLEMENTED
IN FPGA

As stated above, the implemented tree arbiter has erroneous
behaviors. Such faults are caused by the behavior of RSFF in
a metastable state. Since the signals inside FPGA cannot be
observed, we use SPICE to analyze the metastability of RSFF
implemented on FPGA.

A. Model of RSFF implemented by cross tie of logic blocks

To carry out circuit analysis, SPICE requires a circuit
model of RSFF. The structure of slice is as shown in Fig.
6. We adopt structure based on path MOSFETs for a model of
a multiplexer. Fig. 9 shows the structure of SM. The MOSFET
matrix described in Fig. 9 is located the cross point of vertical
and horizontal wires. Blocks connected to MOSFET gates
indicate SRAM cells. Fig. 10 shows the structure of CB. The
higher part of the CB is used for inputs and one of the wires
is selected by a multiplexer. The lower part of the CB is used
for outputs and connect to one of the wires by path MOSFET.

In the case that RSFF is used to process the arbitration, the
inputs of the RSFF is asserted almost simultaneously. LUT
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Fig. 7. Implementation of the 4-input tree arbiter on FPGA.

Fig. 9. The structure of switch matrix.

then selects cell SRAM which is set if the feedback input
is 0 and otherwize selects SRAM which is reset and outputs
through the pass MOSFET. Thus LUT is equivalent to 3-state
buffer which is always turned on and modeled shown in Fig.
11.

The path MOSFET is a MOSFET which constructs a
multiplexer and the number of MOSFETs depends on the
implementation. SM and CB can be modeled as a cascading
connection of path MOSFETs.

Thus RSFF can be modeled as a circuit shown in Fig. 12.
Here, the buffers correspond to those in CB, and cascading
connections of path MOSFETs correspond to the MOSFETs
in SM and CB.

Fig. 10. The structure of connection block.

B. Result of Analysis by SPICE

We used 0.6µm rule models bsim3v3n and bsim3v3p as
SPICE parameters.

We change the difference of time (referred to as ∆t) when
two signals inputted to RSFF change and simulated the outputs
of the RSFF. We show an example of output waveform in
Fig. 13, where the number of path MOSFETs is 8 and ∆t
is 0.01nsec. Here, the horizontal axis indicates time and the
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time difference between two inputs

Fig. 13. An example of waveform with the metastability.

Fig. 11. The LUT model used for simulation.
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Fig. 12. The RSFF model used for simulation.

vertical axis indicates output voltage.

As shown in the Figure, this waveform oscillates. Oscilla-
tion may occur in the condition that the gain of the feedback
loop is greater than or equal to 1 and the phase is an odd
multiple of π. That RSFF obtains sufficient loop gain from 10

inverters on the feedback loop and its path MOSFETs satisfies
the condition of the phase. Thus cross coupled LUTs may
increase the probability of such oscillation. It also enlarges
the difference of outputs of RSFF and then, even if the glitch
killer circuit can be implemented, makes it hard to prevent the
propagation of the metastability. Constrast to that, the proposed
tree arbiter never causes such propagation to upper TM and
has an advantage on decreasing faults.

Fig. 14 and 15 show the propagation delays for various
values of ∆t. The horizontal and vertical axes indicate ∆t
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1015
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3035
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Fig. 14. Relation of ∆t and propagation delay(# of path MOSFETs is 4)
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Fig. 15. Relation of ∆t and propagation delay(# of path MOSFETs is 8)

and the propagation delay, respectively. The propagation delay
represents the time from the inputs change until the output
voltage becomes stable. In the case that output is stable to 0
or 1, we consider the output voltage is stable at the time when
output becomes 10% or 90% of the power voltage last time,
respectively. As ∆t increases, the propagation delay becomes
smaller discretely. This is because the waveform is oscillating
then.

With increasing the number of path MOSFETs, the prop-
agation delay time increases in case that metastability occurs
(for example, when ∆t = 0.01[sec], the propagation delay
time increases about 10[nsec]). If ∆t has the same value, the
number of oscillations also stays unchaned and the oscillation
period is increased due to the increase of propagation delay
time caused by the path MOSFETs. This seems to be because
that the path MOSFET has no gain factor and has only inertial
delay factor. Since the path MOSFET increases the propagation
delay time, the number of path MOSFETs should be smaller
as possible.

V. CONCLUSION

In this paper, we propesed an implementation of an asyn-
chronous tree arbiter on FPGA. This implementation can
reduce faults caused by metastability without glitch killer
circuits. In our method, TMs in each stage perform arbitration
and send requests to the upper TMs at the same time. We also
analyze the metastability of RSFF which is implemented by a
cross connection of LUTs. As a result, it becomes clear that
such RSFF has an oscillating output. This type of behavior
cannot be prevented by a glitch killer but out method can
reduce the effects of metastability.

In our study, several significant challenges still remain. We
show the results of metastability analysis for tree arbiters with
4 and 8 path MOSFETs. First, it is necessary to clarify the rela-
tion between the number of path MOSFETs and performance

in stable-state. We also carried out simulation and observed
the behavior of RSFF. Second, to clarify the mechanism of
the fault occurrence, the simulation of whole the tree arbiter
must take place. Finally, evaluation of frequency of the fault
occurrence is also required. These challenges need to be
addressed to show efficiency of the proposed implementation
for reducing faulty behaviors.
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