
Prtformance Eveluation of Ad Hoc Network Protocol
Implemented in Server Side Java Script

 Atsushi Ito, Hiroyuki Hatano, Masahiro Fujii,
Mie Sato, Yu Watanabe

Graduate School of Engineering
Utsunomiya University

7-1-2 Yoto, Utsunomiya-shi, Tochigi, 320-8585 Japan
{at.ito, hatano, fujii, mie, yu}@is.utsunomiya-u.ac.jp

Yuko Hiramatsu, Fumihiro Sato

Department of Economics
Chuo University

742-1 Higashinakano, Hachioji, Tokyo 192-0393, Japan
{susana_y, fsato}@tamacc.chuo-u.ac.jp

Akira Sasaki
GClue Inc.

2-1-14 Higashi-Sengoku, Aizu-wakamatsu-shi, Fukushima, 965-0818, Japan
Akira@gclue.jp

Abstract—We are now developing a sightseeing support
system in Nikko, a world heritage in Japan, using BLE beacon
and smartphone. We installed 24 beacons from Nikko Station to
Shinkyo-bridge. 17 beacons were set outside, so that they had to
be small and inconspicuous since they did not have to disturb
scenery. So that, they have been using small button shaped
battery. We have to take care these beacons. They are
sometimes out of battery, and the shell of a beacon is sometimes
broken. We think that one of the problems of the beacon system
is maintainability. We think one possibility to solve this problem
is to develop ad hoc network of beacons. This network can
collect information of remaining power of battery, also we can
find broken beacon if it is not included in the ad hoc network. We
performed preliminary study to develop ad hoc network easily.
We tried to use server side Java Script to describe ad hoc
network protocol. In this paper, we describe performance and
productivity of OLSR using server side Java Script. We compare
OLSR implemented in Java Script and implemented in C. As the
result, productivity of OLSR in server side Java Script was 1.5
times higher than that was implemented in C, however, the
performance was 18 times slower than that was implemented in
C.

Keywords—Ad hoc network; server side Java Script, BLE
Beacon

I. INTRODUCTION
In recent years, the development process of embedded

systems becoming difficult because of increasing complexity
of the controlled object. Moreover, shortening development
time and cost reduction request sometimes cause degrade of the
quality and reliability of the system. In order to develop a large
scale and complicated system in a short period of time, it is
necessary to improve the portability and reusability of software.
Portability and reusability are using other system program that
was created for the certain system.

In a conventional embedded system, an application works
on an operating system and we have developed many
techniques to realize portability and reusability of software.
After introducing Android [1], the situation was changed.
Android was developed on Java VM, called Dalvik VM until
2014, now ART [2]. By using Java, portability and reusability
of application was increased.

At the same time, technology for WEB was also developed.
Progress of HTML5 [3], function and performance of Java
Script on WEB browser was progressed. Especially, V8
engine [4] for Java Script increased the performance.
Traditionally, Java Script has been used in WEB browser.

A technique to use Java Script on server is called Server
Side Java Script. This technique runs Java Script engine on a
server. By using this technique, it is possible to use Java Script
to describe applications such as HTTP server on a server.

One of the popular server side Java Script environments is
node.js [5]. This environment has been developing from 2009.
If we describe applications on server side Java Script such as
node.js, such application has high portability and reusability
since they are independent from operating system such as
Linux, Windows, Mac, and Android etc.

On the other hand, we are now developing a sightseeing
support system using BLE beacon in Nikko. During this trial,
we have to pay a lot of effort to check status of beacon, such as
working well or not, battery is exhausted or not. We would
like to introduce some functions to check status of beacons in
the future. For that purpose, we would like to use a platform
that is more convenient and independent from operating system.
Details are described in Section 2.

For that purpose, we are considering to introduce Java
Script based ad hoc network function on BLE module, since
latest BLE module has ARM CPU inside [6] and provides
reasonable execution power of application. In the future, there

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186–5140
Volume 5, Number 1, pages 34–39, January 2016

- 34 -

may be much kind of beacons and we have to control different
types of beacons as a group and maintain them collectively.
For this purpose we have to understand performance of ad hoc
network protocol in Java Script. To check the performance of
ad hoc network on node.js, we implemented OLSR [7], a
proactive ad hoc network protocol, on node.js and run a test
program to measure the delay.

In the section 2, we briefly explain outline of sightseeing
support system by using BLE beacon in Nikko. Then, we
mention our previous works relating to ad hoc network and
target of this research in section 3. In section 4, we describe
result of evaluation and discussion. Section 5 mentions related
works and section 6 describes conclusion.

II. OUTLINE OF SIGHTSEEING SUPPORT SYSTEM BY USING
BLE BEACON IN NIKKO

In this section, we would like to explain outline of our project
to develop sightseeing support system by using BLE beacon in
Nikko.

Traditionally, travelling is getting away from daily life.
Visiting unknown places is one of the great pleasures. We can
discover many things such as hidden history of a village, original
culture and wild nature. “Discover” means “dis”=”unveil”
“cover”, so a travel gives us new information. The dream to
discover unknown parts of the world brings us to unknown
places. The satisfaction is not proportional to the amount of
information.

We started a study to investigate what is the most attractive
aspect of travel and how to increase expectation and satisfaction
of travel in Nikko [8]. Nikko is one of the world heritages in
Japan. In Nikko, there is the Tosyogu-shrine [9] that is a
gorgeous grave of Ieyasu Tokugawa who is the first Syogun of
Tokugawa Era. However, now, Nikko is not so famous for
foreigners. A research by travel agency displayed that Nikko is
not listed in top 30 locations where foreigners would like to visit
[10]. This study was selected as one of research themes of
SCOPE (Strategic Information and Communications R&D
Promotion Programme) [11] funded by Ministry of Internal
Affairs and Communications of Japan (MIC) [12].

A. Outline of the system
Last year, we performed a feasibility study for the

development of sightseeing system by BLE beacon [13,14]. The
purpose of the feasibility study was to collect real voice and
impression on Nikko from visitors and to confirm the possibility
to use BLE beacon for sightseeing. (Fig.1)

BLE beacons were installed from Tobu Nikko Station to
Shinkyo-bridge, an entrance to Tosyogu-shirine as described in
Fig. 2. White and red circle are the beacons that were installed in
outdoors. Beacons in shops are 6 (green circle). To make it
small, this beacon uses a button shape battery. Diameter of the
beacon is 35mm. (Fig.3)

B. Problem to operate beacon
In the project, beacons were set outdoors and put on a

navigation plate by double-sided tape (Fig.4). Also, they were
installed in wide area. In this case, they were installed along
the road and the distance was 1.5km. It was hard job to check

problems of the beacons, such as failure of the BLE modules
and battery exhaustion, almost every week. It took about one
hour to check all beacons and change batteries etc. After the
research period is finished, we are planning to move this
application to a commercial service. It might be a problem to
maintain beacons in outdoors.

We think that one possible solution is using ad hoc network
to maintain beacons, since if they are connected by ad hoc
network and gather information of soundness and battery level
form one beacon such as located in the station or information
in Nikko Station.

Fig. 1. Sample screens of sightseeing navigation application

Fig. 2. Map of locations of BLE beacons

Fig. 3. Beaco module

Information of
bus stops

Information of
beacons

123
4

5
6

7
8

9
10

11
12

13
14

15

16

17

21

20

25

18

24

1922

23

神橋

東武日光駅

東照宮

Nikko
station

Shinkyo
bridge

Tosyogu
shrine

- 35 -

Fig. 4. BLE beacon on a street sign

III. OUR PREVIOUS WORKS AND TARGET OF THIS RESEARCH

A. Previous Works
We are developing Information Delivery System for Deaf

People at a Major Disaster (IDDD) for 10 years [15] (Fig. 5).
This is a group of LED displays connected by ad hoc network
and some of the displays are connected to WAN. Through
WAN or locally, information, such as safety information, lunch
delivery time, are delivered to support people who are victims
of disaster in a evacuation shelter.

In 2013, we published a paper [16] to compare AODV [17]
and OLSR [7]. In this paper, for the unexpected change of
network of LED displays of IDDD, OLSR performs better than
AODV. In this trial, we developed application to control LED
display in Java Script and we proved that the control
application could display characters very fast, such as 20
characters per second. However, we implemented both AODV
and OLSR in C. So that, we would like to compare
performance of ad hoc network protocol written in Java Script
and in C.

B. Test program
We decided to compare OLSR running on Linux and

node.js as described in Fig. 6. Left side of Fig.6 means OLSR
is written in C and running on Linux, on the other hand, OLSR
is written in Java Script on node.js.

OLSR is a popular ad hoc network protocol. OLSR has
two important functions, one is “MPR selector detection” and
another is “Topology control”. OLSR use a special node
“MPR (MultiPoint Relay)” for flooding. Only MPR can
transfer control message. By using MPR, OLSR can
reduce overhead of flooding.

For the test, we implemented a test application as described
in Fig.7. This application sends “Hello” message and “TC”
message. “Hello” message is sent in “2 sec – random”, and
“TC” message is sent in “6 sec – random”.

We added a “Delay Measurement Message” to measure
delay of message transfer. This is a UDP packet and it
contains a message. The message contains text data. If “Delay

Measurement Message” is received (T1), the process starts to
prepare data transfer and send it (T2). We measure delay as T2
– T1.

We implemented it both in C and Java Script.

We set two RaspberryPi modules on a desk. The distance
of them was 20cm and measured delay.

Fig. 5. Outline of IDDD

Fig. 6. Software architecture that was used for comparison

IV. EVALUATION
In this section, we explain the result of evaluation.

A. Measurement of delay
We performed the test described in previous section

1,000,000 times for the test case implemented in C (Figure 8)
and 100,000 times for the test case implemented in Java Script
(Figure 9). Figure 10 shows a graph that removes an
exceptional data in Figure 9.

Details of delay are described in TABLE II. Average delay
of test program in C was 0.23millisecond and that in Java
Script was 4.19 millisecond. The distribution of test program
in C was 0.022 and that in Java Script was 0.826. Maximum

Beacon

App.js OLSR.js

Node.js

Linux

App.js

OLSRNode.js

Linux

- 36 -

delay of test program in C was 206.08millisecond and that in
Java Script was 12.92millisecond.

B. Measurement of productivity
To measure productivity, we counted the lines of code in C

and Java Script. As described in previous section, if we
assume the productivity is promotional to the numbers of line,
the productivity of Java Script is about 1.6 times higher than
that of in C. Also, application in Java Script works on node.js
is independent from operating system. This might be another
fact to contribute to productivity.

Fig. 7. Test sequence

TABLE I. TEST ENVIRONMENT

TABLE II. AVERAGE OF DELAY, DISTRIBUTION AND MAXIMUM OF
DELAY

 Average delay Distribution Maximum delay

Java Script 4.19 [ms] 0.826 206.08 [ms]

C 0.23 [ms] 0.022 12.92 [ms]

Ratio (JS/C) 18.22 37.55 15.95

C. Discussion
In this subsection, we discuss on the result described in

above subsections.

1) Delay
In this experiment, delay of test application in Java Script is

18 times longer than that in C.

Fig. 11. shows distribution of delay except one exceptional
result. This graph shows that except one case, maximum delay
of application in Java Script is about 15millisecond. It might
be acceptable for normal use such as to transfer user
information to server from a beacon or send maintenance
information.

However, for the real time service, it sometimes becomes a
problem. For example, if Java Script is used for IDDD. The
display can display 20 characters in a second at a maximum
speed. This is a maximum speed for deaf people to read on a
LED display. (Normal people cannot catch up such fast scroll.)
It means that 50 millisecond for one character. If 4 displays are
connected, it may cause 15 x 4 = 60 millisecond delay. This
means that these displays cannot synchronize to display
messages.

2) Productivity
To measure productivity, we counted the lines of code in C

and Java Script. As described in previous section, if we
assume the productivity is promotional to the numbers of line,
the productivity of Java Script is about 1.6 times higher than
that of in C. Also, application in Java Script works on node.js
is independent from operating system. This might be another
fact to contribute to productivity.

3) Further Study
a) Delay

As described in Fig.9, a large delay (206.08 [ms]) was
measured. In another trial, we measured similar value. We
have not yet found the reason.

b) Applying to BLE beacon
If we would like to use node.js, we have to check the

specification of the latest BLE module.

If we would like to run node.js on Coretex-M3, it may
require the following specification. Espruino [18] is one of the
smallest MPU that Java Script can be executed.

Espruino’s specification is as follows.

• 32-bit 72MHz ARM Cortex-M3

• 256KB of Flash memory, 48KB of RAM

For example, nRF52 [6] has the following specification.

• 64-MHz ARM Cortex-M4

• 512KB flash and 64KB RAM

The performance between nRF52 and Espruino is almost
same. So that it may be possible to run node.js on nRF52.

Start

Update table

Process 1
(Raspberry-1)

Start

Process 2
(Raspberry-2)

Hello

Hello

TC

TC

Delay Measurement Msg

Stop

Lookup route

Transfer packet

T1

Stop

T2

Device, SW Model Version Clock [MHz] Memory [MB]

CPU Raspberry Pi B+ 700 512

WiFi GW-USNano2

OS Linux 3.6

Node.js 0.10

C Compiler GCC 4.6

- 37 -

V. RELATED WORK
Reference [19] describes an example to implement high

performance network protocol in node.js, unfortunately the
example is not an ad hoc networking protocol,. The authors
wrote “Node.js’s architecture makes it easy to use a highly
expressive, functional language for server programming,
without sacrificing performance and stepping out of the
programming mainstream. “.

We can find several papers to evaluate performance of
node,js as a web server [20, 21]. They show the performance
of Java Script application running on node.js is good.

VI. CONCLUSION
In this paper, firstly, we mention the problem that we are

facing to develop sightseeing support system by using BLE
beacon in Nikko. The problem is maintaining BLE beacons
that are installed in outdoors.

To solve this problem, we would like to introduce ad hoc
network in a beacon to maintain a beacon group. For that
purpose, we are considering to introduce Java Script based ad
hoc network function on BLE module.

To understand performance of ad hoc network described in
Java Script, we performed comparison OLSR in Java Script
running on node.js and in C.

 As the result, productivity of OLSR using server side java
script was 1.5 times higher than that was implemented in C,
however, the performance was 18 times slower than that was
implemented in C.

In addition, we compare performance of latest BLE beacon
and MCU that can be used to run node.js. The specifications of
them are almost same. So that, we are positive to use Java
Scrip on BLE beacon and introduce portable and reusable
application in a beacon to provide powerful application.

The number of data

D
el

ay
 [m

s]

The number of data

D
el

ay
 [m

s]

The number of data

D
el

ay
 [m

s]

Fig. 8. Delay (in C)

Fig. 9. Delay (in Java Script)

Fig. 10. Delay (in Java Script without an exceptional data)

Delay: Td [ms]

Po
ss

ib
ilit

y
of

 D
el

ay
 <

 T
d Java Script

C

Fig. 11. Distribution of delay

- 38 -

ACKNOWLEDGMENT
Authors also would like to express special thanks to

Mr.Kobayashi, graduated Utsunomiya University March 2015,
who supported this research.

Authors also would like to express special thanks to
Mr.Funakoshi of Nikko Tourism Association, Mr.Ishihara of
Educational Tour Institute, Mr.Miyamoto of Kinki Nippon
Tourist Co., Ltd., Mr.Muroi and Mr.Ueda of H.I.S Co.,Ltd.,
Mr.Takamura and Mr.Yoshida of Hatsuishi-kai that is an
association of shopping street of Nikko, Mr.Nakagawa of
Kounritsuin Temple, and Dr.Nagai who is a Professor
Emeritus of Utsunomiya University.

This research was performed as a project of SCOPE
(Strategic Information and Communications R&D Promotion
Programme) funded by Ministry of Internal Affairs and
Communications in Japan.

REFERENCES

[1] https://source.android.com/index.html
[2] https://source.android.com/devices/tech/dalvik/
[3] http://www.w3.org/TR/html5/
[4] https://code.google.com/p/v8/
[5] https://nodejs.org/en/
[6] https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-

low-energy/nRF52832
[7] RFC3626: Optimized Link State Routing Protocol (OLSR),

https://www.ietf.org/rfc/rfc3626.txt

[8] http://www.city.nikko.lg.jp.e.tj.hp.transer.com
[9] http://www.toshogu.jp/english/index.html
[10] Trip advisor, “The most populer spot for visitors to Japan 2015”,

http://tg.tripadvisor.jp/news/ranking/inboundattraction_2015/
[11] http://www.soumu.go.jp/main_sosiki/joho_tsusin/scope/ (in Japanese)
[12] http://www.soumu.go.jp/english/index.html
[13] http://blog.bluetooth.com/bluetooth-sig-introduces-new-bluetooth-4-1-

specification/
[14] http://www.braveridge.com/BLE%20guide.html
[15] Atsushi Ito, Hitomi Murakami, Yu Watanabe, Masahiro Fujii, Takao

Yabe and Yuko Hiramatsu: “Information Delivery System for Deaf
People at a Larger Disaster”, Biomedical Research Vol.1, no.2, 17 Pages
(2013.6)

[16] Atsushi Ito, Takao Yabe, et.al., "A study of optimization of IDDD
(Information Delivery System for Deaf in a Major Disaster)", Proc. First
International Symposium on Computing and Networking (CANDAR
2013), 6th International Workshop on Autonomous Self-Organizing
Networks (ASON 2013), pp.422-428, 2013

[17] RFC3561: Ad hoc On-Demand Distance Vector (AODV) Routing,
https://www.ietf.org/rfc/rfc3561.txt

[18] http://www.espruino.com
[19] Stefan Tilkov and Steve Vinoski, "Node.js: Using JavaScript to Build

High-Performance Network Programs",IEEE Internet Computing, Issue
No.06, pp: 80-83 (2010 November)

[20] Kovatsch, M., Lanter, M. and Duquennoy, S.,"Actinium: A RESTful
runtime container for scriptable Internet of Things applications", Internet
of Things (IOT), 2012 3rd International Conference, pp.135 - 142, (Oct.
2012)

[21] Daniele Bonetta, Achille Peternier, Cesare Pautasso and Walter Binder,
"S: a Scripting Language for High-Performance RESTful Web Services",
PPoPP’12, pp.97-106, (February, 2012)

- 39 -

