
Industrial proof of HPC application design

 for long term maintenance

Francois Letierce

CEA

CEA, DAM, DIF

F-91297 Arpajon Cedex, France

francois.letierce@cea.fr

Abstract— For the past 20 years, we developed CFD software

in an industrial context. These applications contain several highly

complex physics and can use a lot of resources. To offer the best

user experience, these software were designed or modified to use

super-computers’ power in order to achieve reasonable

simulation times. Therefore, although developers were not

computer scientists (but mostly physicists and mathematicians)

they learned HPC the hard way. Through a historical journey,

we propose to share our experience of making a large and

heterogeneous application HPC compliant, and how this work

has influenced our choices for developing its successor. Then, we

present this new HPC orientated software. We explain its

architecture: object-orientated approach and proprietary

middleware which can abstract low level HPC related problems;

and its development methodology: UML modeling with code

generation and fully integrated testing environment for results

and performance analysis. Finally, we give some feedbacks on its

development experience and show some early results. These

results are behavior and performance comparison between new

and old “hand tuned” code, on mainframe processors.

Keywords—legacy application migration; software design;

HPC; object-orientated framework; development methodology

I. A HISTORICAL INTRODUCTION

Simulation has always been an important part of our job,
but, for the last couple of decades, it has become our main
focus. We use an iterative scientific approach to solve our
industrial problems. It comes with 3 main steps:

 First, we try to model real and highly complex
phenomena with physical laws which are translated into
mathematical equations;

 Then, numerical simulations are used to solve these
discreet equations (in time and space);

 Finally, simulations results are compared with
experimental ones to validate models.

Although this methodology is working fine, it has evolved
over time. In 20 years, every engineer has become very
familiar with computers and it’s now unthinkable to do your
scientific job without one. In numerical simulation field, even
more complex computers are used: supercomputers. And they
come with different flavors over the ages.

A. Part 1: Supercomputers

Not only these engineers need to be fluent in some
programing language, but they also need to master some low
level computer skills in order to get the most of
supercomputers’ power. These skills depend on
supercomputers architectures and internal technologies. Here
are some examples of what we’ve been through in our
company:

 The 1st supercomputer bought to run our large
industrial simulation software was a Cray T90,
providing roughly 50Gflops. As a vector processing
machine, developers needed to learn how to write code
specifically to use its maximum potential.

1

 The 2nd one had a totally different architecture. It was a
SMP cluster. Hundreds of nodes composed of several
CPUs with shared memory, providing roughly 5Tflops.
No more need to use a vector friendly approach. But
this time, developers were trained to grasp message
passing parallelism, rewriting software to get a chance
to use all this power.

 Thankfully, the 3rd one used similar cluster
architecture, providing roughly 50Tflops. Nevertheless,
as CPUs were Intel Itanium, developers’ knowledge of
computers was extended, almost as much as these CPUs
pipelines. This should have needed some code rewrite
to achieve better performance. But this time, we passed.

 With the 4th one, we thought we finally get a hand on
what will ever be supercomputers. Even refined (Intel
Xeon Nehalem, Fat Tree Infinity Band, etc.) its
architecture was familiar. System was much more
mature and stable (Linux, SLURM, LUSTRE, etc.).
Still, something was different, multi-core processors.
Some developers did not grasp the need to redesign
their code to use concurrency [1], some others tried to
abstract parallelism between CPU nodes and CPU cores
[2], the rest tried to rewrite code, entirely or partially,
using multithreading (sometimes nested inside message
passing parallelism) to achieve performance (1Pflops).

 Now, the 5th one is at door. Composed of 2 distinct
parts. First part is an upgraded “clone” of the 4th one.
But again, a “little” change in CPUs’ (Intel Xeon

1 Fun fact, this supercomputer was like a very big black coffin, filled

with Fluorinert so every pieces of it can be liquid-cooled.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 7, Number 1, pages 5–8, January 2018

– 5 –

yasuaki

Haswell) design: vector processing units are back…To
achieve maximum performance (roughly 2.5Pflops),
multilayers of parallelism are needed. One for message
passing, one for multithreading, one for vector
processing. And this is even more mandatory to fully
exploit the 20Pflops of the second part of this
supercomputer: hundreds of nodes of Intel Xeon-Phi
(KNL).

B. Part 2: HPC applications

With this history in mind, needlessly to say that legacy
HPC application migration of has been very important to us. In
this talk, we will speak about one of our fast Computational
Fluid Dynamic software.

Almost 20 years ago, researchers and engineers, physicists,
mathematicians and some found of computers people were
gathered in a lab to develop CFD codes. Separated in 2 teams,
each team developed a code. These programs needed to
implement complex physical models, each one with a specific
goal. They were designed to be run one after the other and aim
to be highly performant.

The 1st one, A1, was originally written in FORTRAN and
was a sequential program. As supercomputers evolved, the 1st
major HPC migration was to make it parallel. Writing message
passing parallelism, lots of “glue code” was added, written in C
and later in C++. Core data structures were mostly arrays and
helpers functions. The rewriting process took a lot of time and
resources. It ended making the code more complex to
understand and to maintain. Changes were scattered
everywhere and mostly undocumented. A1 program was
developed, maintained and used in an industrial context for
almost 20 years. Of course, new features were introduced along
the road. Developers designing them were more aware of HPC
needs and tend to think of them when creating new algorithms.
But as we have seen though supercomputers’ history,
parallelism needs of a time may be different from one of
another time. Eventually, performance bottleneck were studied.
For example, it took a couple of years to rewrite a complex
feature very sequential by nature so it can be run in parallel. In
an industrial context, you can’t remove a much needed feature
because it destroys performance. Sometimes, you can’t even
switch to newer or different technologies because it would
imply changing years of simulation results, used as data bases
for users’ work.

The 2nd one, A2, was entirely written in FORTRAN.
Although it has known a very similar fate to A1, glue code to
make it parallel, changes and new features have always been
written in FORTRAN. This choice made maintenance quite
easier.

With the new era of supercomputers based on many cores
architecture, it has become inevitable to rewrite codes to use
concurrency. A1 or A2 have been migrated too many times
already, and further internal changes cannot be afforded. This
would cost too many resources, too much time and would end
up giving even complexes codes and be harder to maintain.
Then, decision was made to write a new code: A3, replacing
both A1 and A2 codes. Along the stakeholder requirements, it
had to be HPC compliant, ready to use future exascale

supercomputer. We still don’t know what form these future
supercomputers will take, but with feedbacks and experiences
gathered for 20 years, one thing is certain: we need abstraction.
This abstraction layer must allow us to address underneath
changes without rewriting core level code.

II. CHOICES TO DESIGN AN INDUSTRIAL HPC APPLICATION

“MIGRATION READY”

Now part of the teams, computer scientists have bring along
them some professional knowledge about software design,
algorithms implementations technics, low level computers
functionality, etc. With them, we tried to define what we want
through this much needed abstraction layer and what shape it
would take.

A. Programming language

Experience has shown us that using only one programming
language is easier to maintain. We want abstraction and need
performance. We choose C++. It has object-orientated
programming features. Still, you can access low level API to
achieve good performance. C++ ISO Committee is also
becoming more active lately (C++’11, 14, 17 standards).
Especially expanding language for better abstraction and
working on unifying concurrency API.

B. Abstraction layer

Although DSLs are very attractive because they provide
very high level of abstraction and good performance (via
specific generated code optimization), one of stakeholders need
was long-term maintenance. Most considered DSLs were
developed by small teams or felt too much like research tools.
Therefore decision was made it was too risky to base large
industrial software on these. Instead, we have chosen a
proprietary framework, compliant with our professional needs
and developed for over 10 years. It is named Arcane [3] and is
co-developed by CEA-DAM [4] and IFPEN [5].

III. DEVELOPMENT ENVIRONMENT AND TOOLS

Fig. 1. One example of Arcane’s macro which hides complex iterator

objects. Theses objects can automate vectorization (using intrinsic operations).
Message passing abstraction API is also demonstrated in this figure.

– 6 –

A. Arcane

This development platform is designed to provide lots of
tools to help writing parallel numerical simulation codes. It is
written in C++, uses object-orientated approach, support
dynamic configuration through XML configuration files and is
well documented. It covers architectural aspects, like mesh
associated data structures; parallelism, to abstract technical
difficulties; and environment, like input data set, dynamic
configuration of code execution, output files, etc. From a HPC
migration perspective, here are some interesting items:

 Could it be a mesh item or a core component,
everything is well designed as object-orientated classes.
You can find common design patterns and it helps
developers making quality code, mutualizing and
anticipating future features. This is where object-
orientated truly shine and it is needed to avoid rewriting
everything.

 PODs are redefined, meaning you can easily change
floating point precision, integer size or be prepared for a
hypothetical 128bits change, without rewriting your
code. But that’s pretty basic. You can also find “SIMD
types” which were designed to use explicitly SIMD
methods (when it’s available in your CPU’ instructions
set). This API abstracts the technical difficulties to use
intrinsic functions for vector processing functionality.

 Most importantly: parallelism is abstracted. A simple
API lets you synchronize mesh data structures over
multiples sub-domain (using message passing
paradigm). Even more interesting, concurrency and
vector processing are also hidden behind a simple API.
For example, using a simple macro, “Fig.1”, let you
iterate over a mesh data structure items. Behind this
macro is an iterator object (like standard C++ STL
iterator). Used with appropriate SIMD types, this
iterator will ensure that compiler will generate SIMD
instructions. Even better, compatible CPU’ instructions
set will be auto detected by the platform, so AVX512
will be used for KNL, AVX for Haswel, etc. No need to
learn intrinsic API anymore, which is a big relief to
physicists or mathematicians.

B. Modane

Obviously, developers need to learn Arcane’s concepts and
API to make use of it. There are fundamental classes you will
need to understand before starting writing your code. Creating
these objects is a tedious task. When using Arcane platform,
you can have access to an UML-like modeling software called
Modane [6]. With this tool, developers can graphically design
their software components as they would do by drawing an
UML class diagram. Modane is also able to auto-generate
associated Arcane/C++ source code and XML input options.
The tedious task is gone, and the generated base code is error
proof, “Fig.2”. Along the multiples options of code generation,
you will find the possibility to generate parallel code for some
specific functions. For example, specifying that a method will
iterate over all nodes of the mesh, Modane can generate a
multithreaded loop. All you have to provide is the node
processing function you want.

Fig. 2. An example of component design using a typical strategy design

pattern with Modane’s GUI. C++ auto-generated code is given above model.

XML configuration part is given below.

IV. METHODOLOGY

These choices have allowed us to design new software
using a model driven concept. With capitalized experience of
both teams, the 1

st
 development step was to decide what can be

shared between old codes, what was useful for both of them
and can be reused “as it is”, mainly because it has already been
worked on and can be “unplugged” with minimum effort.
These discussions took place for almost a year. In the end, we
grasped how to mutualize our core business models and
decided how components will be designed. The design process
of each component started with a reverse engineering phase.
Depending on how the component was designed in old codes,
development could either be:

 To rewrite from scratch, using middleware full
potential;

 To partially rewrite, replacing old hard coded
parallelism operations or data structures and use
framework API;

 To reuse the whole component, only developing an
adaptive wrapping layer.

Because we use object-orientated concepts, complying with
well-known design patterns, almost every component’s models
are expendables. One can be replaced with new one easily and
switching from one to another is as simple as changing a
keyword in a configuration file, “Fig.2”. With these
possibilities, validation was made easier. We have been able to
compare components’ behaviors and results from old codes to
newly developed one. This was much needed in an industrial
context to ensure users experience won’t change (too much)
and to produce expected results for similar simulations. Once
validation is over, new features or improved components can
be introduced, tested and used.

V. RESULTS

After almost 5 years of development, we have successfully
delivered new software, ready for industrial use, merging all
functionalities of both old codes. A lot of time was used to train

– 7 –

developers (who, I recall, are mainly physicists and
mathematicians) to object-orientated concepts and UML
modeling. Obviously, learning Arcane API and mechanisms
took some time too. But once developers were used to these,
they spend most of their time designing component,
capitalizing years of feedbacks, thinking ahead for new
possibilities and focusing on features and algorithms. They can
think of how to improve their models and numerical schemes
instead of learning low level computer tricks or writing tons of
glue code. Coding time was pretty short after all. Validation
took a lot of time, and because it was done comparing results
with older codes, we encountered one of the main problems of
the chosen methodology: performance issues. Simulation times
between old and new codes were very different. Using generic
middleware, real object-orientated design and auto-generated
code tend to cost a lot, performance wise. Because of the HPC
context and to deliver a better experience for users, we worked
on improving performance the last few years, along the rest of
the development process.

Using profiling tools (Arcane internal ones or 3
rd

 party
ones), developers learned to optimize their code. Most of the
problems were:

 Bad use of some framework operations, mostly due to
inexperience during early development stage;

 Sub-optimal use of middleware data structures or
parallelism mechanisms;

 Reuse of algorithms with inadequate data flow for
Arcane’s data structure, heavily penalizing memory
access.

With the help of Arcane’s team, problems were solved and
developers are now writing much more appropriate code.
Arcane own developers’ team has also fix and enhance their
framework. This conjugate work is still in progress and results
are very encouraging, improving performance over the years,
“Fig.3”. Furthermore, as Arcane is used by other applications,
every change benefit to all of them.

Performance comparison

0
1
2
3
4
5
6
7
8
9

P
ro

to
ty

p
e

ju
n

e
 2

0
1

5

ju
n

e
 2

0
1

6

ju
n

e
 2

0
1

7

re
la

ti
ve

 s
im

u
la

ti
o

n
 t

im
e

 r
at

io

A3

A1

Fig. 3. Performance comparison between old and new code on a typical

industrial test case: 2 million elements mesh, divided in 64 sub-domains.

VI. CONCLUSION

Capitalizing experience through many years of HPC
application development, switching from one supercomputer to
another, porting parts of codes to adapt to each flavor, we
decided to write new software to face the exascale challenge.
We needed an abstraction layer to hide low level computer
related needs so developers, who are not computer scientists,
could focus on their own discipline.

This abstraction comes with a cost. Learning object-
orientated approach and UML modeling is not an easy task.
Yet, these concepts feel more sustainable than to learn current
CPU instruction set. When developing as a team, they are
powerful tools to design, share and anticipate features of
software.

Using a professional framework alleviate the coding phase
and provide abstraction over data structures, parallelism,
configuration, etc. Inconvenient is that it aims to be generic,
and by doing so, may not be as performant as handmade and
finely tuned code. Yet, with good interaction and joint effort,
lots of work has been done to improve both framework and
application. Arcane’s roadmap is promising and more expected
HPC features are to come, such as SIMD operations
abstraction, dynamic load balancing, task based multithreading,
etc.

Overall, experience is very positive, from both developers
and users. Performance issues are becoming less and less
relevant. We are very optimistic that, with upcoming works (on
both software and framework), the new software will be more
performant. Especially because it is much more stable and
robust, it can handle resource scaling old one could not. And
this is exactly what we wanted to hit the exascale road.

[1] H. Sutter, "The Concurrency Revolution", C/C++ Users Journal, 23(2),
2005.

[2] P. CARRIBAULT and M. PERACHE, "The MPC (MultiProcessor
Computing) framework", https://sourceforge.net/projects/mpc

[3] G. Grospellier and B. Lelandais, "The Arcane development framework",
In Proceedings of the 8th workshop on Parallel/High-Performance
Object-Oriented Scientific Computing (POOSC '09). ACM, New York,
NY, USA, 2009.

[4] CEA-DAM Available at: www-dam.cea.fr.

[5] IFPEN Available at: www.ifpenergiesnouvelles.fr

[6] B. Lelandais and M.-P. Oudot, "Modane: A Design Support Tool for
Numerical Simulation Codes", Oil Gas Sci. Technol. – Rev. IFP
Energies nouvelles, 71 (4), 2016.

– 8 –

