
Parallel Rabin-Karp Algorithm Implementation on
GPU (preliminary version)

Lucas S. N. Nunes, Jacir L. Bordim
Department of Computer Science

University of Brasília
70910-900 Brasília - DF - Brazil

{saad,bordim}@unb.br

Yasuaki Ito, Koji Nakano
Department of Information Engineering

Hiroshima University
1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan

{yasuaki,nakano}@cs.hiroshima-u.ac.jp

Abstract—The task of finding strings that match to a given pat-
tern is of interest in a variety of practical applications, including
DNA sequencing and text searching. Owing to its importance,
alternatives to accelerate the pattern matching task have been
widely investigated in the literature. The main contribution of
this work is to present a parallel version of the celebrated Rabin-
Karp algorithm. Given a pattern P of size m and a text string
T of size n, the Rabin-Karp algorithm finds all occurrences of
the pattern P in T with high probability. The proposed scheme
can compare k different patterns to the input text concurrently.
The proposed, parallelized, version of the Rabin-Karp algorithm
has been implemented on the GeForce GTX 960 GPU. The
results obtained show that the proposed implementation provides
acceleration, compared to a sequential (CPU) implementation,
surpassing 140 times for k = m = 1024 and n = 222.

Index Terms—Pattern matching, Rabin-Karp algorithm, par-
allel implementation, GPU, CUDA.

I. INTRODUCTION

String or pattern matching algorithms are used to find the
occurrences of a pattern in a given text or a set of input
strings [1]. The task of finding strings having a complete or
even a partial match to a given pattern has several practical
applications, including DNA sequencing, detecting plagiarism,
text mining, spam filtering and so on [1], [2], [3]. Suppose
that a pattern P and a string T of length m and n (m� n),
respectively, are given. The pattern matching is a task to find
all occurrences of the pattern P in T . Brute-force algorithms
for the pattern matching perform character comparisons be-
tween the scanned text substring and the complete pattern from
left to right. In the case of a mismatch or a complete match
it shifts exactly one position to the right. Hence, brute-force
algorithm runs in O(mn) time [4]. String searching algorithms
such as Aho-Corasick [5], Boyer Moore [6], Knuth-Morris-
Pratt [7] and Rabin-Karp [8] are well-known and widely used.
These algorithms improve the running time to find a matching
by avoiding rescanning the input string T . For instance, the
Rabin-Karp algorithm can solve the pattern search problem in
O(n) time with high probability. Pattern matching algorithms
can be categorized as single pattern matching and multiple
pattern matching algorithms. The Rabin-Karp algorithm is a
string searching algorithm that be applied to both contexts.

To accelerate the pattern matching computation, GPU
(Graphics Processing Unit) implementations have been ex-

plored in the literature [9], [10]. The GPU is a specialized
circuit designed to accelerate computation for building and
manipulating images [11]. Latest GPUs are designed for
general purpose computing and can perform computation in
applications traditionally handled by the CPU. The Compute
Unified Device Architecture (CUDA) is a parallel computing
architecture provided by NVIDIA [12]. CUDA gives develop-
ers access to the virtual instruction set and memory of the par-
allel computational elements. NVIDIA GPUs have a number
of streaming multiprocessors (SMs) that can execute multiple
threads in parallel. CUDA uses different types of memories
in the NVIDIA GPUs, of particular importance is the shared
memory and the global memory [12]. The address space of
the shared memory is mapped into several physical memory
banks. If two or more threads access the same memory banks
at the same time, the access requests are processed in turn. To
maximize the memory access performance, threads of CUDA
should access distinct memory banks to avoid bank conflicts.
To maximize the bandwidth between the GPU and the global
memory, the consecutive addresses must be accessed at the
same time. Thus, CUDA threads should perform coalesced
access when they access the global memory. When no bank
conflict occurs, the shared memory provides a much lower
latency than uncached global memory. Clearly, to accelerate
applications using GPUs, one needs to pay special attention
to shared memory and global memory accesses.

A CUDA C implementation of the Rabin-Karp algorithm
is presented in [13]. In the paper, the authors compare the
average execution times of a serial, GPU and Pthread parallel
implementation of Rabin-Karp algorithm on a random DNA
sequence data. Their experiments considered random DNA
text sequence of 2 Mbytes in length (n) and pattern sizes up
800 base-pair (bp) in length (m). The results show speedup
improvements up to 15.68 times for 25 bp and up to 7.58
times for 800 bp. Interestingly, their results show a rapidly
decreasing performance for larger m in the GPU. The main
contribution of this work is to propose a parallel algorithm for
computing the pattern matching problem on the GPU. More
precisely, we parallelized the Rabin-Karp algorithm. As a key
ingredient, we proposed a mechanism to improve the compu-
tation of the intermediate hash values. The proposed scheme
can compare k different patterns to the input text concurrently.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 7, Number 1, pages 28–32, January 2018

– 28 –



The parallelized version of the Rabin-Karp algorithm has been
implemented on the GeForce GTX 960 GPU [14]. The results
obtained by the “nvprof” profiling tool [15] shows that the
proposed implementation provides acceleration surpassing 140
times for as compared to a sequential (CPU) implementation
for k = m = 1024, n = 222.

The rest of this paper is organized as follows. Section II
defines pattern search problem and presents a simple matching
function. Section III presents an overview of the Rabin-Karp
algorithm and lays the foundation for the proposed parallel
algorithm. Section IV presents the proposed parallel Rabin-
Karp algorithm on the GPU. Experimental results are shown
in Section V. Finally, Section VI concludes this work.

II. PATTERN SEARCH PROBLEM

Let T = t0t1 . . . tn−1 be a string of n characters (8-bit
unsigned integers). Let P0, P1, . . . , Pp−1 be p patterns, such
that each pi,0pi,1 . . . pi,m−1 (0 ≤ i ≤ p− 1) is a string of m
characters. The pattern search problem is to find all matching
position in T for all patterns. More specifically, we find all
pairs (i, j) of position j and pattern Pi such that

tjtj+1 . . . tj+m−1 = pi,0pi,1 . . . pi,m−1. (1)

First, assume that p = 1. Clearly, we have only one pattern
P = p0p1 . . . pm−1 of m characters for the pattern search
problem. Let EQ(j) be a function such that it returns true if
and only if Equation (1) is satisfied. Figure 1 shows a possi-
ble implementation of function EQ(j). This straightforward
implementation can compute EQ(j) in O(m) time. Clearly,
the pattern search problem can be solved by calling EQ(j)
for all j (0 ≤ j ≤ n−m), which takes O(mn) time.

III. RABIN KARP ALGORITHM

The idea of the Rabin-Karp algorithm is to use a hash
function to compute EQ(j) in O(1) time. Let h be a hash
function for a string s0s1 . . . sm−1 such that

h(s0, s1 . . . sm−1) =

(dm−1s0 + dm−2s1 + . . . d0sm−1) mod q, (2)

where d and q are appropriately selected prime numbers. We
choose d = 2 and q = 13 to explain the examples in this
paper. In actual implementations, q must be a larger prime
number such as q = 65521, because q corresponds to the size
of the hash table to compute the hash function. In the Rabin-
Karp algorithm, h(p0p1 . . . pm−1) is computed in advance. For

Function EQ(j)

1 f o r k ← 0 t o m− 1 do
2 i f tj+k 6= pk re turn f a l s e ;
3 re turn true ;
4 f o r j ← 0 t o n−m do
5 i f EQ(j) then output(j) ;

Figure 1: Straightforward pattern search algorithm

each j (0 ≤ j ≤ n−m), h(tjtj+1 . . . tj+m−1) is computed to
determine if it is equal to h(p0p1 . . . pm−1). Note that if they
are not equal, then EQ(j) never returns true. EQ(j) may
return true only if they are equal. Using this idea, the Rabin-
Karp algorithm solves the pattern search problem in O(n) time
with high probability.

Figure 2 shows the Rabin-Karp algorithm for a single input
pattern. Note that Hp stores h(P ) = h(p0p1 . . . pm−1). Also,
Ht initially stores h(t0t1 . . . tm−1). They are computed in
O(m) time. After the first iteration of the second for-loop,
Ht stores (((dm−1t0+d−2t1+· · ·+d0tm−1) mod q−dm−1t0)·
d + tm) mod q = (dm−1t1 + d−2t2 + · · · + d0tm) mod q,
which is equal to h(t1t2 . . . tm). Hence, it should be clear
that Ht stores h(tjtj+1 . . . tj+m+1) after the j-th iteration.
Thus, condition Ht = Hp is equivalent to h(p0p1 . . . pm−1) =
h(tjtj + 1 . . . tj+m−1) and this algorithm solves the pattern
search problem correctly. If Ht = Hp is false, EQ(j) is not
executed and this iteration of the for-loop takes O(1) time. If
Ht = Hp is true, EQ(j) executed and it takes O(m) time.
However the probability that Ht = Hp is very small. Since
the values of them are in range [0, q− 1], we assume that the
EQ(j) is executed with probability 1

q . Under this assumption,
the Rabin-Karp algorithm runs O(m + n + m

q ) = O(n +m)
time.

We can extend the Rabin-Karp algorithm for multiple pat-
terns. In Rabin-Karp for a single pattern, h(P ) is computed in
advance. For multiple patterns P0, P1, . . . , Pp−1, we compute
h(Pk) for every k, (0 ≤ k ≤ p − 1). This takes O(mp)
time. After that, each iteration of the for-loop determines
Ht = h(Pk) for every k(0 ≤ k ≤ p − 1). Each iteration
takes O(p) time, thus the for loop takes O(np) time. Thus, the
total computing time is O((n+m)p) time for p patterns. We
can accelerate the Rabin-Karp algorithm for multiple patterns
using a hash table. For p patterns P0, P1, . . . , Pp−1, let HT
be a hash table of q entries such that

HT (r) =

{
k if h(Pk) = r,

−1 otherwise.
(3)

For simplicity, we assume no collision, that is, h(Pk) 6=

Rabin-Karp Algorithm [Single Pattern]

1 Hp ← Ht ← 0 ;
2 f o r j ← 0 t o m− 1 do {
3 Hp ← (Hp · d+ pj) mod q ;
4 Ht ← (Ht · d+ tj) mod q ;
5 }
6 f o r j ← 0 t o n−m do {
7 i f Ht = Hp then {
8 i f EQ(j) then output(j) ;
9 Ht ← ((Ht − dm−1tj) · d+ tj +m) mod q ;

10
11 }

Figure 2: Rabin-Karp algorithm for a single pattern.

– 29 –



Table I: Modules for d = 2 and q = 13.

i 0 1 2 3 4 5 6 7 8 9 10 11 12
di mod q 1 2 4 8 3 6 12 11 9 5 10 7 1

i 12 13 14 15 16 17 18 19 20 21 22 23 24
di mod q 1 2 4 8 3 6 12 11 9 5 10 7 1

Rabin-Karp Algorithm [Multiple Patterns]

1 /∗Ht and HT a r e computed b e f o r e h a n d ∗ /
2 f o r j ← 0 t o n−m do {
3 i f HT (Ht) 6= −1 then {
4 i f EQ(i, j) then output(i, j) ;
5 Ht ← ((Ht − dm−1tj) · d+ tj+k) mod q ;
6 }
7 }

Figure 3: Rabin-Karp algorithm for multiple patterns.

h(Pk′) for all k and k′ such that k 6= k′. Let EQ(i, j)
denote the execution of EQ(j) for pattern Pi. We can simply
modify the Rabin-Karp algorithm for a single pattern to run
for multiple patterns as follows.

If HT (Ht) = k 6= −1 then Ht = h(Pk). Thus, this
algorithm works correctly. Let us evaluate the computing time.
The values of h(Pk) for all k can be computed in O(mp)
time. After that the hash table HT is computed in O(q)
time. Figure 3 shows the Rabin-Karp algorithm for comparing
multiple patterns. Note that each iteration of the for-loop
takes O(1) time if HT (Ht) = −1. Otherwise, EQ(i, j) is
executed in O(m) time. Since the size of the hash table is q
and m entries of them have non −1 value, we can assume that
the probability that EQ(i, j) is executed is m

q . Thus, the total
computing time for p patterns is O(mp+ q + n+ nm

q ).

IV. PARALLEL RABIN-KARP ALGORITHM

Let us parallelize Rabin-Karp algorithm. For later reference,
we note the following well-known theorem in number theory:

Theorem 1. For any two prime numbers d and q, dq−1 mod
q = 1 always holds.

For example, for d = 2 and q = 13, dq−1 mod
q = 212 mod 13 = 1. From this theorem, di mod q =
di−(q−1) mod q holds. Thus, we have the following corollary:

Corollary 2. For any two prime numbers d and q, and an
integer i, di mod q = di mod (q−1) mod q always holds.

For example, for d = 2, i = 15, and q = 13, d15 mod q = 8
and d15 mod (13−1) = 23 mod 13 = 8.

For T = t0t1 . . . tn−1 let ai = dn−i−1ti for all i(0 ≤ i ≤
n− 1) and âi = a0 + a1 + · · ·+ ai be the prefix-sum of a. In
other words, âi = dn−1t0+dn−2t1+ · · ·+d0tn−1. If we have
all prefix-sums â0, â1, . . . , ân−1, we can compute the value of
hash function h(tjtj+1 . . . tj+m−1) by the following formula:

h(tjtj+1 . . . tj+m−1) = (âj+m−1 − âj−1) · dm−n+j (4)

Since

âj+m−1 − âj−1 = aj + aj+1 + · · ·+ aj+m−1 (5)

= dn−j−1tj + dn− j − 2tj+1+

· · ·+ dn−j−mtj+m−1 (6)

= (dm−1tj + dm−2tj+1+

· · ·+ d0tj+m−1) · dn−j−m (7)

= h(tjtj+1 . . . tj+m−1) · dn−m−j , (8)

we can confirm that the above Equation (4) is correct. Note
that m− n+ j may be non-positive.

Suppose that the value of d0 mod q, d1 mod
q, . . . , dq−2 mod q are stored in an array of size q − 1.
Once we have this array we can compute di for any integer i
by virtue of Corollary 2. Since 0 ≤ i mod (q − 1) ≤ q − 2,
we can compute di mod q by reading (i mod (q − 1))-th
element of the array. For example, if d = 2, q = 13 and
i = 100, instead of computing di mod q = 2100 mod 13,
we can calculate i mod (q − 1) = 100 mod 12 = 4 and
access the position 4 of array on Table I to get the final
result 3. That is, the result of di mod q can be obtained from
the i mod (q − 1) position of array. Note that the values of
di mod q in Table I always repeat for i > q − 1.

The parallel Rabin-Karp algorithm can be described as
follows:
• Step 1 Load a preprocessed lookup table for di mod

q (0 ≤ i ≤ q − 1).
Step 2 Compute the values of h(Pk) for all k (0 ≤ k ≤
p−1) in parallel and create the hash table HT using the
calculated values.

•• Step 3 Compute the a0, a1, . . . , an−1 in parallel.
• Step 4 Compute the prefix-sums â0, â1, . . . , ân−1 by

parallel scan.
• Step 5 For all j (0 ≤ j ≤ n−m), compute (âj+m−1 −

âj−1) · dm−n−j , which is equal to h(tjtj+1 . . . tj+m−1).
If HT (h(tjtj+1 . . . tj+m−1)) 6= −1 then evaluate
EQ(i, j) and outputs (i, j) if EQ(i, j) is true.

The prefix computation in Step 1 and in Step 4 can be done
very efficiently using prefix scan algorithm presented in [16],
[17]. In what follows we present the implementation details
of the parallel Rabin-Karp algorithm on the GPU as well as
the experimental results.

V. EXPERIMENTAL RESULTS

The main purpose of this section is to show the experimental
results of the parallel Rabin-Karp on the GeForce GTX 960
GPU [14]. The GTX 960 has 8 streaming multiprocessors
and 2GB of memory. In the experiments, the compiler nvcc

– 30 –



Table III: Running time results (ms) for the parallel Rabin-Karp on the GTX 960 and CPU, with parameters d = 2, q = 65521,
k = 512, and n = 2i, (22 ≤ i ≤ 27).

n Implementation Step 2 Step 3 Step 4 Step 5 Total Speed-up

222
CPU 4.53 34.53 26.41 92.37 157.83 118.12GPU 0.04 0.19 0.49 0.61 1.34

223
CPU 4.52 68.54 52.88 184.30 310.25 126.26GPU 0.04 0.46 0.75 1.21 2.46

224
CPU 4.59 138.38 107.55 373.98 624.50 130.64GPU 0.03 1.16 1.18 2.41 4.78

225
CPU 4.54 274.39 213.38 743.02 1235.33 127.47GPU 0.04 2.77 2.08 4.80 9.69

226
CPU 4.53 558.04 426.62 1496.06 2485.25 126.53GPU 0.04 6.36 3.62 9.61 19.64

227
CPU 4.52 1159.64 850.68 2974.56 4989.40 130.65GPU 0.04 13.90 6.83 17.42 38.19

Table IV: Running time results (ms) for the parallel Rabin-Karp on the GTX 960, with parameters d = 2, q = 65521, k = 1024,
and n = 2i, (22 ≤ i ≤ 27).

n Implementation Step 2 Step 3 Step 4 Step 5 Total Speed-up

222
CPU 10.37 40.53 30.29 112.30 193.49 140.70GPU 0.05 0.21 0.50 0.61 1.38

223
CPU 9.33 73.96 56.75 209.27 349.31 141.58GPU 0.05 0.47 0.74 1.21 2.47

224
CPU 9.05 142.99 108.69 390.22 650.94 136.02GPU 0.05 1.16 1.17 2.41 4.79

225
CPU 8.97 276.82 215.64 759.10 1260.53 130.02GPU 0.05 2.77 2.07 4.81 9.69

226
CPU 9.15 554.71 424.45 1492.03 2480.35 126.70GPU 0.05 6.31 3.62 9.59 19.58

227
CPU 9.06 1157.91 851.91 3004.75 5023.63 133.00GPU 0.04 13.59 6.81 17.32 37.77

Table II: Running time (ms) for the CPU implementation for
the Rabin-Karp Single Pattern (RK) and GPU implementation
of the parallel Rabin-Karp algorithm for k = 1, d = 2, q =
65521 and n = 2i (22 ≤ i ≤ 27).

n Implementation Total Speed-up

222
RK 159.25 120.05GPU 1.33

223
RK 285.37 114.89GPU 2.48

224
RK 567.79 119.01GPU 4.77

225
RK 1094.83 113.12GPU 9.68

226
RK 2135.12 109.49GPU 19.50

227
RK 4306.30 113.56GPU 37.92

version 7.5.17, CUDA version 7.5 and the Arch Linux OS
version 4.6.3.1 have been used. For comparison purpose, the
sequential Rabin-Karp algorithm for single and multiple pat-
terns, presented in the previous section, has been implemented
in C++ language on an Intel I5 760 2.80GHz using the g++
compiler version 7.2.0. The experimental results are drawn
from 20 runs. For each run, the execution time of each Step
2 to 5 have been recorded and averaged.

In the experiments, we considered k = 1, 512, 1024 patterns
with m = 1024 characters each, the input string n varies
from 222 to 227 characters (≈ 4 to 128 Mbytes). The input
parameters are stored in the global memory along with the

preprocessed lookup table of Step 1. The parameters d = 2
and q = 65521, which is the largest prime number less than
216 were used. In Step 2, we use one CUDA block with 64
threads for each pattern and compute the values of h(Pk). In
Step 3 we use 64 threads in 64 CUDA blocks to improve
occupancy. In Step 4, we use the prefix-sum of the CUDA
UnBounded (CUB) library version 1.7.3 [17]. CUB is a C++
template library which utilizes policy-based design to provide
highly-configurable kernel components that can be tuned for
different GPU architectures and applications. In this work,
we used the “decoupled look-back” algorithm for performing
global prefix-scan [16]. However, the code has been slightly
modified so that the sum of two terms a and b in prefix-sum
is calculated using (a+ b) mod q. In Step 5 we also used 64
threads with 64 blocks for best occupancy.

Table II shows the running time results (ms) comparing the
proposed parallel algorithm with the Rabin-Karp Algorithm
for Single Pattern. Note that Step 1 is not considered in the
table because we use preprocessed values. With k = 1, the
parallel implementation does not have the advantage of using
the hash table for multiple patterns. Even in this case, when
compared to the CPU implementation, the GPU attains an
speed-up above 100 times for d = 2, q = 65521 and n = 2i

(22 ≤ i ≤ 27).

Tables III and IV show the results for k = 512 and
k = 1024, respectively. The GPU implementation achieved
a speed-up surpassing 130 and 140 times for k = 512 and
k = 1024, respectively, as compared to the sequential CPU

– 31 –



implementation. As before, Step 1 is not considered in the
results. In Step 2, the processing time depends of the size of
m and k. It can be can seen that with k = 1024, the CPU takes
about twice the time compared to the case where k = 512. In
the other steps, the processing time increases gradually with
the input size for the GPU. Table V shows the GPU results
for k = 512 or k = 1024. One can observe that doubling the
number of patterns k has little impact on the GPU computing
time, however, the processing time increases proportionally to
n.

Table V: GPU running time results (ms) for k = 512 and
k = 1024

n k Step 2 Step 3 Step 4 Step 5 Total

222
512 0.04 0.19 0.49 0.61 1.34

1024 0.05 0.21 0.50 0.61 1.38

223
512 0.04 0.46 0.75 1.21 2.46

1024 0.05 0.47 0.74 1.21 2.47

224
512 0.03 1.16 1.18 2.41 4.78

1024 0.05 1.16 1.17 2.41 4.79

225
512 0.04 2.77 2.08 4.80 9.69

1024 0.05 2.77 2.07 4.81 9.69

226
512 0.04 6.36 3.62 9.61 19.64

1024 0.05 6.31 3.62 9.59 19.58

227
512 0.04 13.90 6.83 17.42 38.19

1024 0.04 13.59 6.81 17.32 37.77

Table VI: GPU occupancy of each step of the parallel imple-
mentation for m = 227

Step 2 Step 3 Step 4 Step 5
Theorical 100% 100% 62.5% 100%
Achived 91.5% 99.9% 61.1% 99.9%

Table VI shows the “theoretical” and “achieved” occupancy
for the proposed algorithm. The occupancy results have been
taken from the NVIDIA profiler tool [15]. In Step 2, the
archived occupancy was under 92% because after each thread
process the value of the pattern Pk, we need to use parallel
reduction on the shared memory. In Steps 4 and 5, each thread
has an independent task. The Step 4 is processed with CUB
and has a lower occupancy because the CUB’s prefix-sum
implementation must aggregate values of many CUDA blocks.
On the other hand, Steps 3 and 5 are close to the theoretical
values.

VI. CONCLUSION

This work presented two variations of the Rabin-Karp al-
gorithm, one sequential and one parallel. Experimental results
shown that the parallel variation provides speed-up surpassing
100 times when compared to the sequential Rabin-Karp algo-
rithm. The proposed parallel algorithm is capable of comparing
k different patterns to the input text concurrently. The pro-
posed, parallelized, version of the Rabin-Karp algorithm has
been implemented on the GeForce GTX 960 GPU. The results
obtained show that the proposed implementation provides
acceleration, compared to a sequential (CPU) implementation,
surpassing 140 times for k = m = 1024 and n = 222.

ACKNOWLEDGMENT

This work was partially supported by DPP/UnB, CNPq and
CAPES.

REFERENCES

[1] E. Ukkonen, Algorithms for approximate string matching. Information
and Control, vol. 64, no. 1-3, pp. 100-118, 1985.

[2] L.-L. Cheng, D. Cheung, and S.-M. Yiu, “Approximate string matching
in DNA sequences,” in Proceedings of the Eighth International Confer-
ence on Database Systems for Advanced Applications, March 2003, pp.
303–310.

[3] H. Gharaee, S. Seifi, and N. Monsefan, “A survey of pattern matching
algorithm in intrusion detection system,” in Telecommunications (IST),
2014 7th International Symposium on, Sept 2014, pp. 946–953.

[4] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

[5] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Commun. ACM, vol. 18, no. 6, pp. 333–340, Jun.
1975. [Online]. Available: http://doi.acm.org/10.1145/360825.360855

[6] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Commun. ACM, vol. 20, no. 10, pp. 762–772, Oct. 1977. [Online].
Available: http://doi.acm.org/10.1145/359842.359859

[7] P. V. Knuth D.E., MORRIS (Jr) J.H., “Fast pattern matching in strings,”
SIAM Journal on Computing, 1977.

[8] R. M. Karp and M. Rabin, “Efficient randomized pattern-matching
algorithms,” IBM Journal of Research and Development, vol. 31, no. 2,
pp. 249–260, March 1987.

[9] D. Man, K. Nakano, and Y. Ito, “The approximate string matching on
the hierarchical memory machine, with performance evaluation,” in 7th
International Symposium on Embedded Multicore Socs (MCSoC 2013),
Sept 2013, pp. 79–84.

[10] Y. Utan, M. Inagi, S. Wakabayashi, and S. Nagayama, “A GPGPU
implementation of approximate string matching with regular expression
operators and comparison with its FPGA implementation„” in Proc. Int.
Conf. Parallel and Distributed Processing Techniques and Applications,
2012.

[11] W.-m. W. Hwu, GPU Computing Gems Emerald Edition, 1st ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011.

[12] NVIDIA Corporation, “NVIDIA CUDA C Programming guide,” http:
//docs.nvidia.com/cuda/cuda-c-programming-guide/, July 2016.

[13] N. Dayarathne and R. Ragel, “Accelerating rabin karp on a graphics
processing unit (gpu) using compute unified device architecture (cuda),”
in 7th International Conference on Information and Automation for
Sustainability, Dec 2014, pp. 1–6.

[14] NVIDIA Corporation, “GeForce GTX-980,” http://www.geforce.com/
hardware/desktop-gpus/geforce-gtx-960, April 2015.

[15] ——, “NVIDIA Visual Profiler,” https://developer.nvidia.com/
nvidia-visual-profiler, May 2016.

[16] D. Merrill and M. Garland, “Single-pass parallel prefix scan with
decoupled look-back,” http://research.nvidia.com/sites/default/files/pubs/
2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf, Oct 2017.

[17] N. Research, “CUDA UnBound (CUB),” https://nvlabs.github.io/cub/
index.html, Oct 2017.

– 32 –


