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Abstract- In this work, we have applied two deep 

reinforcement learning (DRL) algorithms designed for both 

discrete and continuous action space. These algorithms were 

well embedded in a rigorous physical model using Simscape 

Power SystemsTM (Matlab/SimulinkTM Environment) for 

smart grid optimization. Bechmark test were conducted by 

comparing the results from the  MILP (Mixed-integer linear 

programming) and the DRL. The results showed that the agent 

successfully captured the energy demand and supply feature 

in the training data and learnt to choose behavior leading to 

maximize its profit. 
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I    INTRODUCTION 

 Energy grid system containing renewable energy 

resources(RES) such as photovoltaic energy, wind power as 

well as hydropower have been considered as alternative 

power supply configuration. It is renovating conventional 

grid systems, aiming at reducing the emission of CO2 while 

mitigating the global warming. A decentralized energy 

system is more robust and resilient against the unexpected 

natural disasters, which are frequently occur in countries 

such as Japan. However, due to the intermittent nature of 

RES, a mismatch between electricity supply and demand is 

often encountered and causes instability and limit of power 

output. As an effective approach to these challenges, smart 

grid has been proposed and has shown great technological 

innovation towards intelligent, robust and functional power 

grid [1][2].  

Smart grid evolves energy transmission among different 

sub-smart grid utilities, which finally contribute to the 

efficient energy management ecosystem of energy storage, 

energy supply, balanced load demand over large scale grid 

configuration.  Construction of efficient smart grid system 

is in principle a control optimization mathematical problem. 

A wide range of methods have been proposed to tackle this 

challenge including linear and dynamic programming as 

well as heuristic methods such as PSO, GA, game or fuzzy 

theory and so on [3]. In the recent years, studies on energy 

optimization in smart grid has gradually shifted to agent-

based machine learning method represented by state of art 

deep learning and deep reinforcement learning. Especially 

deep neural network based reinforcement learning methods 

are emerging and gain popularity to for smart grid 

application [4][5].      

    In this work, we focus on the following issues and 

tasks: 

(1) Different from previous reports, we have developed our 

deep reinforcement learning algorithm embedded in a 

rigorous physical model using Simscape Power SystemsTM 

for smart power grid optimization. All the parameters used 

in smart grid represents the realistic electric circuits and 

detailed fluctuation regarding the voltage, frequency and 

phase can be therefore fully revealed, which are not 

available in previous reports where the constructed smart 

grid system could not output sufficient information.  

(2) For RL, model-free off-policy deep Q-learning suing 

MatlabTM is developed. Actor critic and DQN are suited for 

addressing continuous state space and discrete action space 

respectively. Here we have focused on the discrete action 

control designed for switching the grid power supply/sell 

and battery charge /discharge.  

(3)  For continuous state and continuous action space, we 

have self-developed a H-DDPG  (hybrid-deterministic 

policy gradient) algorithm, in which we have hybridized the 

latest deep deterministic policy gradient with the deep 

actor-critic stochastic policy gradient.  

Fig.1:  Sketch of smart grid optimization using deep 

neural network based reinforcement learning algorithm.   
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II   ALGORITHM AND MODEL 

 (i) Deep Q-Learning (DQN): A general model which 

describes the main framework is given as follows.  In this 

sketch, we adopted deep Q-learning algorithm as an 

example to illustrate the learning principle: physical model 

of smart grid simulation environment based on Simscape 

Power SystemsTM was constructed. The state space is 

always continuous and action space is set either discrete or 

continuous for off-policy Q learning and deep policy 

gradient algorithm respectively.  A detailed operation flow 

is given as follows by the form of pseudo-simulation code: 

(ii) Hybrid Deep Deterministic Policy Gradient (H-

DDPG): Deterministic policy is in theory efficient at the 

late stage of simulation because the policy distribution is 

less variant and more deterministic. Policy gradient is 

usually formulated as follows, where 𝜂   is the policy 

object function; 𝜃is the function approximation parameter 

(in neural network, it is the weight w); s and a correspond 

to the state and action 𝑄𝜋(𝑠, 𝑎)  is the state-action 

function under certain policy 𝜋(𝑎|𝑠, 𝜃𝑝) and  is the : 

𝛻𝜂(𝜃𝑝) = 𝐸 [𝑄𝜋(𝑠, 𝑎) 𝛻𝜃𝑝
𝑙𝑜𝑔 𝜋(𝑎|𝑠, 𝜃𝑝)]       (1) 

policy distribution function. David et al. has shown that if 

the policy is treated as deterministic; the above equation can 

be reformed as: [6] 

𝑄𝜋(𝑠, 𝑎) 𝛻𝜃𝑝
𝑙𝑜𝑔 𝜋(𝑎|𝑠, 𝜃𝑝) = ∇𝑎𝑄(𝑠, 𝑎)        (2) 

and if the action a is approximated as policy action function: 

  𝑎 = 𝑢(𝑠|𝜃𝜇)                               (3) 

using the chain rule  ∇𝑎(𝑠, 𝑎) can be further extended as: 

  ∇𝜃𝑎𝑄(𝑠|𝜃𝑎)∇𝜃𝜇𝑢(𝑠|𝜃𝜇)                      (4) 

and then policy parameter 𝜃𝜇  is updated as the usual 

gradient decent: 

  𝜃𝜇 = 𝜃𝜇 + 𝛼 ∙ ∇𝜃𝑎𝑄(𝑠|𝜃𝑎)∇𝜃𝜇𝑢(𝑠|𝜃𝜇)          (5) 

 

However, implementing the deterministic policy at the 

early simulation stage will inevitably cause high variance 

and slow convergence because the policy is far from 

optimal policy so the policy distribution is fairly stochastic 

and less deterministic with high bias. The hybridized 

algorithm is designed in such a way that both the advantage 

of deterministic and stochastic policy is assimilated thus a 

stable learning profile with fast convergence can be 

achieved.  

(iii) Neural Network Model: In this work, we use 

multilayer neural network including four hidden layers to 

approximate the state-action value function. The activation 

function is fixed at hyperbolic-tangent function and epsilon-

greedy algorithm is utilized to enhance the exploration in 

the case of DQN for discrete action and re-parameterization. 

These techniques were used when using H-DDPG for 

continuous action space.  

(iv) MILP  and DRL Model: In this work we 

performed benchmark test and compared the results from 

the MILP and DRL algorithm. Both the MILP and DRL 

were perfomed under the same input data including the 

solar power generation and electric consumption profile as 

well the purchase/sell price for the electricity. The soft 

constraints for the battery charge/discharge were also 

arranged the same for both methods. The inter-conversion 

principle between these two methods were given in Fig.2. 
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For MILP we divide the constraints in into two parts : Soft 

constraint and hard constraint. And we make soft constraint 

as reward for the neural network learning process and hard 

constraint are difficult to learn so we used them to terminate 

and restart the learning process. 

 

III   RESULTS 

   Here we present one representative simulated results by 

employing DQN algorithm to optimize for discrete action 

space. Mainly we deploy the DRL(DQN) agent to 

maximize earning for comparing with MILP optimization, 

and we also use DRL for maintain balance from different 

power sources.  

There are many optimization methods for different types 

of problems, among them MILP is popular tools in the 

Matlab environment. On the base of Matlab deployed 

energy hub optimization we compared our result and its 

reliability so far. In Fig.3. upper graphs are result of Matlab 

based MILP used optimized result for buying and selling. 

The optimized one-day profit from selling power produced 

by PV and reduced the cost of buying from power producer 

is 74 yen. The lower two graphs are result by our programed 

DRL agent. The optimal result obtained from DRL is 78 yen 

for a day, from selling power produced by PV and reduced 

the cost of buying from power producer. By comparing 

these result DQN (deep reinforcement learning agent) is 

good enough to optimize the power system optimization 

problem. By using reinforcement learning agent we get 

optimized result as well as we can get different option for 

optimizing the problem where these options are not 

available from other optimization tools. 

Optimization tools in Matlab deliver quite accurate 

results but failed to be applied to large scale system. The 

MILP results calculated over 10 days input data has greatly 

deviated from the theoretical solution. On the contrast, DRL 

has greatest advantage over the MILP in this sense. The 

machine learning based DRL method learn the feature of 

the system via big data and generalize the feature using 

neural network. The agent successfully learnt to discharge 

its battery power during daytime instead buying electricity 

Fig.3.  The MILP optimization tools optimized buying and selling schedule in the upper and Agent 

training results using the DQN algorithm. In the lower graph diagram 

Fig.2. Conversion between MILP and DRL implementation 
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from the grid and also learnt to purchase at low price time. 

We also compare the DRL agent and MILP optimization 

result on different PV production pattern and different 

selling buying rate. we used the same DRL reward system 

for all the comparing time and most of time DRL get the 

better result than the optimization tools.  

The DRL agent is able to maintain the balance for power 

source demand stability. There are many options for power 

sources to fulfill the power demand in such problem 

Reinforcement agent can help to maintain supply demand 

balance. In Matlab environment we create virtual power 

resources and power demand as well, from the helps of 

power sources and demand data DRL agent able to maintain 

the power demand and supply. 

 On the base of above works and result, we are building 

large scale virtual power network for demand Grid power 

supply as well as power purchaser many others electricity 

producer like PV, Turbine, Wind farm, CHP etc. and Heat 

producer like gas boiler, heat tank etc. as well. According to 

this plan we need good DRL algorithm as well as more 

agents. Our planed concepts simple diagram is shown in 

Fig.5 and more detailed design principle and preliminary 

results from trial experiments will be given at the 

conference. 

 

IV    CONCLUSION 

We present here a deep reinforcement learning method 

applied for smart grid optimization. From the preliminary 

simulation results, the agent was able to catch the feature 

involved in the balance of load demand, PV power surplus 

and battery discharge/charge as well as grid integrate. The 

agent successfully learnt how to tune its action profile to 

maximize the reward function during training. More 

detailed results regarding to the comparison between DQN 

and H-DDPG and the key role played by reward function 

will be given at the conference.  
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Fig.4.  The model for power balance in Matlab  
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